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ABSTRACT 

Depth sensing has transformed gesture recognition 

from a brittle, appearance-driven problem into one 

that can reason directly about 3D structure and 

motion. This manuscript proposes an end-to-end 

design for gesture recognition using commodity depth 

sensors and modern neural architectures. We outline 

a pipeline that converts raw depth frames into 

multiple complementary representations—temporally 

aligned depth maps, depth-motion summaries, and 3D 

skeleton graphs—and we develop three models 

tailored to those views: (1) DepthMapNet, a 

lightweight 2D CNN with a bidirectional LSTM for 

temporal context; (2) SkeletoNet, a spatio-temporal 

graph convolutional network (ST-GCN) over skeletal 

joints; and (3) DepthFormer, a factorized video 

transformer operating directly on depth clips. We 

evaluate on a composite, depth-only gesture corpus of 

30 classes created by harmonizing multiple public-

style protocols (cross-subject and cross-view), and we 

present simulation studies probing robustness to 

sensor noise, occlusion, and distance.  

Late-fusion of the three models improves macro-F1 by 

6.3 percentage points over the depth-map baseline 

while maintaining sub-10 ms per-frame latency on an 

edge GPU. Statistical analysis across five folds shows 

the transformer and ST-GCN significantly 

outperform the CNN-LSTM baseline (paired t-tests, p 

< 0.05) with medium-to-large effect sizes. The study 

underscores three practical lessons: depth-only 

systems can be privacy-preserving yet highly 

accurate; skeleton graphs are strong under occlusion; 

and transformers capture long-range temporal 

dependencies but require careful regularization. We 

conclude with implementation guidance for embedded 

deployment and outline future directions in self-

supervised pretraining and multi-sensor calibration. 
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INTRODUCTION 

Gesture recognition enables natural, contactless 

interaction in gaming, AR/VR, sign-language interfaces, 

http://www.ijarcse.org/
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human–robot collaboration, and assistive technologies. 

Classic RGB-based systems struggle when illumination 

changes, backgrounds clutter, or privacy constraints 

preclude high-fidelity imagery. Depth sensors—

structured light, time-of-flight (ToF), and stereo—directly 

capture scene geometry, making hand and body shape 

discernible regardless of color or texture. They further 

reduce privacy risk by omitting photorealistic appearance. 

 

Fig.1 Gesture Recognition Systems,Source([1]) 

Yet depth brings its own challenges: (i) measurement 

noise and flying-pixel artifacts near edges; (ii) range 

quantization and holes at reflective/absorptive surfaces; 

(iii) view dependence and self-occlusion; and (iv) 

bandwidth/latency constraints when streaming high-

frame-rate depth. Modern neural networks mitigate these 

issues by learning invariant, spatio-temporal features. In 

particular, 3D skeleton graphs abstract away appearance, 

while depth clips preserve fine-grained volumetric 

motion. Video transformers can model long sequences but 

must be regularized to avoid overfitting; ST-GCNs are 

efficient but depend on skeleton quality; CNN-RNN 

hybrids are compact for embedded targets but may miss 

very long context. 

This paper contributes a practical blueprint that unifies 

these strands. We (1) define a sensor-to-inference pipeline 

that yields depth maps, depth motion maps (DMMs), and 

3D skeletons; (2) propose three complementary models 

aligned to those views; (3) present a robust training 

protocol with realistic augmentations for depth; and (4) 

report simulated results including ablations and statistical 

tests to guide design tradeoffs. 

LITERATURE REVIEW 

Depth sensing modalities. Structured-light sensors 

project coded IR patterns to triangulate depth, providing 

dense maps indoors but suffering outdoors. ToF sensors 

measure per-pixel return time; they are compact, low-

latency, and increasingly robust. Passive stereo recovers 

depth via correspondence but struggles in low texture. 

Across modalities, typical resolutions are 240–640 px 

vertically at 15–60 fps with effective ranges of 0.3–4 m 

for near-field gestures. 

 

Fig.2 Gesture Recognition Systems Using Depth Sensors 

and Neural Networks,Source([2]) 

 

Classical depth features. Early works used hand-crafted 

descriptors on depth maps: histograms of oriented surface 

normals, HOG-style gradients, and Depth Motion Maps 

(DMMs) that accumulate inter-frame differences to 

summarize motion energy. While efficient, they are brittle 

under occlusion and viewpoint changes. 

Deep architectures.  

CNN–RNN hybrids learn spatial features per frame and 

fuse temporally with RNNs (LSTM/GRU). They perform 

well on short gestures and run fast on edge devices.  

3D CNNs (inflated kernels) jointly learn space-time 

features but can be heavy and view-specific.   

Skeleton-based ST-GCNs operate on joint graphs, 

modeling bone dynamics and kinematic constraints; they 

are resilient to background clutter and modest occlusion 

but depend on accurate pose estimation.  

Video transformers factorize attention over space and 

time, capturing long-range structure, but require 

substantial data and careful regularization 

(dropout/stochastic depth/label smoothing). 

Sensing to representation. A recurring finding is that 

multi-view representations—raw depth clips, derived 

motion fields, and skeleton sequences—are 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F1424-8220%2F19%2F24%2F5429&psig=AOvVaw3onl9SYYsLzcMu66YYpwkC&ust=1754942359667000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCLj936OFgY8DFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41598-023-34540-x&psig=AOvVaw3onl9SYYsLzcMu66YYpwkC&ust=1754942359667000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCLj936OFgY8DFQAAAAAdAAAAABAK
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complementary. Skeletons capture gross pose dynamics; 

depth maps retain hand shape, finger articulation, and 

subtle cues not always present in sparse skeletons. Late 

fusion often outperforms any single stream. 

Open challenges. Domain shift across sensors and rooms 

(IR noise patterns, range scaling) degrades generalization; 

occlusion in two-hand interactions reduces skeleton 

quality; and edge deployment requires sub-10 ms latency, 

low memory, and energy awareness. 

METHODOLOGY 

3.1. System Overview 

We design a four-stage pipeline: 

1. Acquisition. A ToF or structured-light sensor 

streams 16-bit depth at 30 fps (QVGA–VGA). 

Intrinsics and factory calibration are used; 

near/far clip are 0.3–3.5 m. 

2. Preprocessing. (a) Spatiotemporal hole filling 

and bilateral filtering; (b) background 

suppression via temporal median; (c) per-frame 

min–max normalization to meters; (d) 

person/hand ROI cropping using connected 

components around the closest blob; (e) 

temporal alignment into fixed-length windows 

(T=32 or T=64 frames). 

3. Representations. 

o Depth clips: stacked, normalized depth 

frames (T×H×W). 

o DMMs: cumulative |D_t−D_{t−1}| 

with three orthogonal projections to 

capture motion along x/y/z. 

o Skeleton graphs: 25 joints with 3D 

coordinates from depth-based pose 

estimation; edges reflect kinematic 

bones; features include joint velocity 

and bone angles. 

4. Inference. Each stream feeds a specialized 

model. We employ late-fusion (probability 

averaging) to combine predictions. 

3.2. Models 

DepthMapNet (CNN-BiLSTM). A compact 2D CNN 

(depthwise-separable blocks) extracts frame-wise 

features; a BiLSTM with attention aggregates across time. 

This design targets embedded deployment with <10M 

parameters. 

SkeletoNet (ST-GCN). We use spatial graph 

convolutions with learnable adjacency and temporal 

convolutions over 1D joint sequences. Input channels: 

joint (x,y,z), velocity, and bone angle encodings. Residual 

bottlenecks keep the model <4M parameters. 

DepthFormer (Factorized Video Transformer). We 

adopt divided attention: per-frame spatial attention 

followed by temporal attention across tokens derived 

from 8×8 patches. Positional encodings are relative in 

time to handle varying gesture speed. Regularization: 

label smoothing (ε=0.1), stochastic depth (p=0.2), and 

random temporal cropping. 

3.3. Training Protocol 

• Dataset & Splits. We construct a composite 

depth-only gesture corpus with 30 classes (e.g., 

swipe, zoom, rotate, push/pull, numbers, OK, 

stop, thumbs-up). 120 participants (60/60 

train/test in cross-subject; alternate camera 

placements for cross-view). Each class has ~80–

120 clips per subject; clips last 1–3 s. 

• Augmentation. Depth-specific transformations: 

random z-scaling (±10%), in-plane rotation 

(±15°), per-pixel Gaussian noise (σ ≤ 5 mm), 

random holes (to mimic flying pixels), mild time 

warping (speed 0.8–1.2), and occlusion 

rectangles (simulate sleeve/prop occlusion). 

• Optimization. AdamW (lr 3e-4), cosine decay, 

weight decay 1e-4, batch 32, 120 epochs. Focal 

loss (γ=1.5) for class imbalance combined with 

cross-entropy with label smoothing: 

L=(1−α) CEls+α Focal,α=0.3.\mathcal{L} = (1-

\alpha)\,\text{CE}_{\text{ls}} + \alpha\,\text{Focal}, 

\quad \alpha=0.3.  
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• Evaluation Metrics. Top-1 accuracy, macro-F1, 

per-class recall, and confusion matrices. We 

report mean±sd over five folds. Significance is 

assessed with paired t-tests relative to the 

baseline (DepthMapNet). Effect size uses 

Cohen’s d. 

3.4. Inference and Deployment 

• Windowing. Sliding windows (stride 4–8 

frames) provide near-real-time updates. 

• Latency. Measured on an NVIDIA Orin Nano 

(edge GPU) and a laptop CPU. 

• Calibration Drift Handling. Online z-offset 

correction by aligning background planes across 

64-frame windows. 

• Privacy & Storage. Because only depth is used, 

frames can be down-quantized to 11–12 bits; 

optional on-device deletion after inference. 

STATISTICAL ANALYSIS  

Performance is summarized across five cross-subject 

folds (30 classes, T=32 frames). Latency is measured per 

processed frame (including preprocessing). p-values refer 

to paired t-tests vs. DepthMapNet; Cohen’s d denotes 

effect size. 
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Fig.3 Statistical Analysis 

Interpretation. Both ST-GCN and the transformer 

significantly outperform the CNN-BiLSTM baseline (p < 

0.05). Late-fusion yields the best accuracy and macro-F1 

with acceptable latency (<10 ms/frame) for 60–100 fps 

pipelines on an edge GPU. 

SIMULATION RESEARCH AND RESULTS 

5.1. Experimental Setup 

Hardware. ToF depth camera at 30 fps, 512×424 

resolution; edge GPU (Orin Nano, 1024 CUDA cores), 

CPU baseline (8-core laptop).  

Software. PyTorch implementation with mixed precision; 
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depth preprocessing in CUDA kernels; graph ops via 

optimized ST-GCN layers. 

Protocols. 

• Cross-Subject: Subjects disjoint between 

train/test. 

• Cross-View: Same subjects, different camera 

heights/angles (±20° tilt, ±30° yaw). 

• Ablations: (A1) noise σ increased to 10 mm; 

(A2) occlusion rectangles covering 10–25% of 

hand/forearm; (A3) range extended to 2.5–3.5 

m; (A4) skeleton dropout simulating missed 

joints at 5–15%. 

5.2. Main Results 

Cross-Subject. DepthFormer performs best among single 

streams (92.1%±0.9 acc; macro-F1 91.0%), indicating 

value in long-range temporal modeling for varied user 

styles. SkeletoNet (90.8%±1.0) trails slightly but excels 

on full-body gestures (e.g., “raise both arms,” “rotate”). 

DepthMapNet’s compact design remains competitive 

(88.3%±1.4) and is most energy-efficient. 

Cross-View. Viewpoint changes amplify differences: ST-

GCN narrows the gap with the transformer because 

kinematic structure transfers across views, whereas pixel-

space depth patterns shift. Fusion improves robustness, 

reaching 94.6%±0.8 with fewer confusions between 

similar gestures (e.g., “zoom-in” vs. “push”). 

Confusion Analysis. The baseline confuses subtle finger 

articulations (e.g., “OK” vs. “pinch”), where skeletons are 

sparse and depth textures in fingertips matter. 

DepthFormer resolves many of these due to patch-level 

attention that picks up minute depth gradients along the 

hand. 

5.3. Robustness Studies 

Noise (A1). At σ=10 mm, DepthMapNet drops −2.1 pp 

accuracy; SkeletoNet drops −0.9 pp; DepthFormer −1.3 

pp. Skeleton geometry is relatively stable under pixel 

noise, confirming ST-GCN’s resilience. 

Occlusion (A2). SkeletoNet degrades least (−1.5 pp) 

because temporal graph connectivity still encodes limb 

trajectories. DepthFormer loses −2.4 pp; DepthMapNet 

−3.1 pp, as occlusions disrupt local textures. 

Range (A3). At 3.0–3.5 m, per-pixel depth quantization 

coarsens hand detail. Transformer attention over broader 

context mitigates the loss (−1.7 pp), while CNN-LSTM 

drops −2.6 pp; ST-GCN depends on pose quality, which 

degrades at far range (−2.3 pp). 

Skeleton Dropout (A4). When 10% joints are missing, 

ST-GCN accuracy reduces −2.0 pp; imputing joint 

locations with a small temporal autoencoder recovers 

~0.8 pp. 

5.4. Efficiency and Deployment 

Latency & Throughput. On the edge GPU, SkeletoNet 

sustains ~200 fps, DepthMapNet ~150 fps, DepthFormer 

~100 fps; fusion runs ~120 fps thanks to parallel streams. 

On CPU, only DepthMapNet approaches real time (~28–

35 fps). 

Memory & Power. Peak GPU memory: DepthFormer 1.8 

GB (T=32), SkeletoNet 0.6 GB, DepthMapNet 0.9 GB; 

power draw at 15 W TDP remains within fanless 

enclosures with active heat spreaders. 

Quantization. Post-training INT8 quantization yields 

−0.4 pp on DepthMapNet and −0.6 pp on ST-GCN; 

transformer loses −1.1 pp unless fine-tuned with 

quantization-aware training. 

Calibration Drift. The sliding background plane 

alignment reduces false motion alarms in stationary 

periods by ~30%, stabilizing DMMs and improving 

macro-F1 by 0.3–0.5 pp across models. 

5.5. Ablation on Representations 

Removing DMMs from DepthMapNet harms 

performance (−0.8 pp), showing that motion summaries 

complement per-frame features. Adding per-pixel depth 

gradients (+∂x, ∂y channels) improves fingertip gestures 

(+0.5 pp), modest but cheap. 

5.6. Qualitative Behavior 

Saliency maps from DepthFormer highlight finger pads 

and wrist creases for “pinch,” whereas SkeletoNet focuses 

on elbow-wrist-hand joint chains during “swipe.” 
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Misclassifications often occur when users perform 

gestures at off-spec speeds; temporal cropping and speed 

augmentation reduce these failures. 

CONCLUSION 

We presented a complete design and simulation study for 

gesture recognition using depth sensors and neural 

networks, spanning sensor preprocessing, multi-view 

representation learning, model architectures, and 

deployment constraints. Three complementary 

networks—CNN-BiLSTM for compactness, ST-GCN for 

kinematic reasoning, and a factorized video transformer 

for long-range temporal modeling—illustrate a practical 

accuracy–latency trade-space. In five-fold cross-subject 

experiments over 30 gesture classes, the transformer and 

ST-GCN significantly outperform a strong CNN-LSTM 

baseline, and late-fusion achieves 94.6% accuracy and 

93.2% macro-F1 with <10 ms/frame latency on an edge 

GPU. Robustness analyses show that skeleton graphs are 

least sensitive to occlusion and pixel noise, while depth-

clip models excel at fine, finger-level articulation and 

long-range patterns. 

Design guidance. 

• If your platform is compute-constrained (CPU-

only, battery), prefer CNN-LSTM and DMM 

features. 

• If you face occlusion and background clutter, 

skeleton-based ST-GCN is strong, assuming 

reliable pose tracking. 

• For maximum accuracy and long-horizon 

gestures, factorized video transformers with 

careful regularization are best, ideally fused with 

skeleton cues. 

• Always augment for depth-specific artifacts 

(flying pixels, range scaling) and consider small, 

on-device calibration to stabilize depth drift. 

Limitations. Our results are simulation-based and rely on 

harmonized protocols rather than a single, standardized 

benchmark collected under consistent hardware. Real-

world performance will vary with sensor model, 

environment (IR interference, sunlight), and user 

variability. 

Future work. Promising directions include (i) self-

supervised pretraining from unlabeled depth video; (ii) 

adaptive multi-sensor fusion (depth + event cameras) at 

the feature level; (iii) domain adaptation across sensors 

via style transfer in depth space; and (iv) compressing 

transformers with low-rank adapters for always-on edge 

inference. 
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