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ABSTRACT

Depth sensing has transformed gesture recognition
from a brittle, appearance-driven problem into one
that can reason directly about 3D structure and
motion. This manuscript proposes an end-to-end
design for gesture recognition using commodity depth
sensors and modern neural architectures. We outline
a pipeline that converts raw depth frames into
multiple complementary representations—temporally
aligned depth maps, depth-motion summaries, and 3D
skeleton graphs—and we develop three models
tailored to those views: (1) DepthMapNet, a
lightweight 2D CNN with a bidirectional LSTM for
temporal context; (2) SkeletoNet, a spatio-temporal
graph convolutional network (ST-GCN) over skeletal
joints; and (3) DepthFormer, a factorized video
transformer operating directly on depth clips. We
evaluate on a composite, depth-only gesture corpus of
30 classes created by harmonizing multiple public-
style protocols (cross-subject and cross-view), and we
present simulation studies probing robustness to

sensor noise, occlusion, and distance.

Late-fusion of the three models improves macro-F1 by
6.3 percentage points over the depth-map baseline
while maintaining sub-10 ms per-frame latency on an
edge GPU. Statistical analysis across five folds shows
ST-GCN
outperform the CNN-LSTM baseline (paired t-tests, p

the transformer and significantly
< 0.05) with medium-to-large effect sizes. The study
underscores three practical lessons: depth-only
systems can be privacy-preserving yet highly
accurate; skeleton graphs are strong under occlusion;
and transformers capture long-range temporal
dependencies but require careful regularization. We
conclude with implementation guidance for embedded
deployment and outline future directions in self-
supervised pretraining and multi-sensor calibration.
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INTRODUCTION

Gesture recognition enables natural, contactless

interaction in gaming, AR/VR, sign-language interfaces,
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human-robot collaboration, and assistive technologies.
Classic RGB-based systems struggle when illumination
changes, backgrounds clutter, or privacy constraints
preclude high-fidelity imagery. Depth sensors—
structured light, time-of-flight (ToF), and stereo—directly
capture scene geometry, making hand and body shape
discernible regardless of color or texture. They further
reduce privacy risk by omitting photorealistic appearance.
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Fig.1 Gesture Recognition Systems,Source([1])

Yet depth brings its own challenges: (i) measurement
noise and flying-pixel artifacts near edges; (ii) range
quantization and holes at reflective/absorptive surfaces;
(iii) view dependence and self-occlusion; and (iv)
bandwidth/latency constraints when streaming high-
frame-rate depth. Modern neural networks mitigate these
issues by learning invariant, spatio-temporal features. In
particular, 3D skeleton graphs abstract away appearance,
while depth clips preserve fine-grained volumetric
motion. Video transformers can model long sequences but
must be regularized to avoid overfitting; ST-GCNs are
efficient but depend on skeleton quality; CNN-RNN
hybrids are compact for embedded targets but may miss
very long context.

This paper contributes a practical blueprint that unifies
these strands. We (1) define a sensor-to-inference pipeline
that yields depth maps, depth motion maps (DMMs), and
3D skeletons; (2) propose three complementary models
aligned to those views; (3) present a robust training
protocol with realistic augmentations for depth; and (4)
report simulated results including ablations and statistical

tests to guide design tradeoffs.
LITERATURE REVIEW

Depth sensing modalities. Structured-light sensors

project coded IR patterns to triangulate depth, providing

dense maps indoors but suffering outdoors. ToF sensors
measure per-pixel return time; they are compact, low-
latency, and increasingly robust. Passive stereo recovers
depth via correspondence but struggles in low texture.
Across modalities, typical resolutions are 240-640 px
vertically at 15-60 fps with effective ranges of 0.3—4 m

for near-field gestures.

Hand gesture recognition system (HGR)
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Fig.2 Gesture Recognition Systems Using Depth Sensors
and Neural Networks,Source([2])

Classical depth features. Early works used hand-crafted
descriptors on depth maps: histograms of oriented surface
normals, HOG-style gradients, and Depth Motion Maps
(DMMs) that accumulate inter-frame differences to
summarize motion energy. While efficient, they are brittle
under occlusion and viewpoint changes.

Deep architectures.

CNN-RNN hybrids learn spatial features per frame and
fuse temporally with RNNs (LSTM/GRU). They perform
well on short gestures and run fast on edge devices.

3D CNNs (inflated kernels) jointly learn space-time
features but can be heavy and view-specific.
Skeleton-based ST-GCNs operate on joint graphs,
modeling bone dynamics and kinematic constraints; they
are resilient to background clutter and modest occlusion
but depend on accurate pose estimation.

Video transformers factorize attention over space and
time, capturing long-range structure, but require
substantial data  and  careful  regularization
(dropout/stochastic depth/label smoothing).

Sensing to representation. A recurring finding is that
multi-view representations—raw depth clips, derived

motion  fields, and skeleton  sequences—are
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complementary. Skeletons capture gross pose dynamics;
depth maps retain hand shape, finger articulation, and
subtle cues not always present in sparse skeletons. Late
fusion often outperforms any single stream.

Open challenges. Domain shift across sensors and rooms
(IR noise patterns, range scaling) degrades generalization;
occlusion in two-hand interactions reduces skeleton
quality; and edge deployment requires sub-10 ms latency,
low memory, and energy awareness.

METHODOLOGY

3.1. System Overview

We design a four-stage pipeline:

1. Acquisition. A ToF or structured-light sensor
streams 16-bit depth at 30 fps (QVGA-VGA).
Intrinsics and factory calibration are used;
near/far clip are 0.3-3.5 m.

2. Preprocessing. (a) Spatiotemporal hole filling
and bilateral filtering; (b) background
suppression via temporal median; (c) per-frame
min—-max normalization to meters; (d)
person/hand ROI cropping using connected
components around the closest blob; (e)
temporal alignment into fixed-length windows
(T=32 or T=64 frames).

3. Representations.

o Depth clips: stacked, normalized depth
frames (TxHXW).

o DMMs: cumulative [D t=D {t—1}|
with three orthogonal projections to
capture motion along x/y/z.

o Skeleton graphs: 25 joints with 3D
coordinates from depth-based pose
estimation; edges reflect kinematic
bones; features include joint velocity
and bone angles.

4. Inference. Each stream feeds a specialized
model. We employ late-fusion (probability
averaging) to combine predictions.

3.2. Models

DepthMapNet (CNN-BILSTM). A compact 2D CNN
(depthwise-separable  blocks) extracts frame-wise
features; a BILSTM with attention aggregates across time.
This design targets embedded deployment with <10M
parameters.

SkeletoNet (ST-GCN). We wuse spatial graph
convolutions with learnable adjacency and temporal
convolutions over 1D joint sequences. Input channels:
joint (x,y,z), velocity, and bone angle encodings. Residual
bottlenecks keep the model <4M parameters.
DepthFormer (Factorized Video Transformer). We
adopt divided attention: per-frame spatial attention
followed by temporal attention across tokens derived
from 8x8 patches. Positional encodings are relative in
time to handle varying gesture speed. Regularization:
label smoothing (¢=0.1), stochastic depth (p=0.2), and
random temporal cropping.

3.3. Training Protocol

e Dataset & Splits. We construct a composite
depth-only gesture corpus with 30 classes (e.g.,
swipe, zoom, rotate, push/pull, numbers, OK,
stop, thumbs-up). 120 participants (60/60
train/test in cross-subject; alternate camera
placements for cross-view). Each class has ~80—
120 clips per subject; clips last 1-3 s.

e Augmentation. Depth-specific transformations:
random z-scaling (+10%), in-plane rotation
(x15°), per-pixel Gaussian noise (¢ < 5 mm),
random holes (to mimic flying pixels), mild time
warping (speed 0.8-1.2), and occlusion
rectangles (simulate sleeve/prop occlusion).

e  Optimization. AdamW (Ir 3e-4), cosine decay,
weight decay le-4, batch 32, 120 epochs. Focal
loss (y=1.5) for class imbalance combined with
cross-entropy with label smoothing:

L=(1—a) CEls+a Focal,0=0.3.\mathcal {L} = (1-
\alpha)\,\\text{CE} {\text{ls}} + \alpha\\text{Focal},
\quad \alpha=0.3.
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e Evaluation Metrics. Top-1 accuracy, macro-F1, (ST-
per-class recall, and confusion matrices. We GCN)
report mean+sd over five folds. Significance is DepthF | 92.1 | 91.0 9.5 |21.70.00 | 1.36
assessed with paired t-tests relative to the ormer | £09 | +1.0 4
baseline (DepthMapNet). Effect size uses (Video
Cohen’s d. Transfo

3.4. Inference and Deployment rmer)

e Windowing. Sliding windows (stride 4-8 Late- 94.6 | 93.2 8.1 33,51 0.00 | 1.98
frames) provide near-real-time updates. Fusion | £0.8 | £0.9 1

e Latency. Measured on an NVIDIA Orin Nano (all
(edge GPU) and a laptop CPU. three)

e (Calibration Drift Handling. Online z-offset
correction by aligning background planes across
64-frame windows. Latency ( m S/fra m e)
e Privacy & Storage. Because only depth is used,
frames can be down-quantized to 11-12 bits;

optional on-device deletion after inference.
STATISTICAL ANALYSIS 9.5

Performance is summarized across five cross-subject

folds (30 classes, T=32 frames). Latency is measured per

processed frame (including preprocessing). p-values refer

to paired t-tests vs. DepthMapNet; Cohen’s d denotes

effect size. = DepthMapNet (CNN-BiLSTM)
Model | Accu | Mac | Laten | Par p- | Coh = SkeletoNet (ST-GCN)
racy ro- cy ams | valu | en’s DepthFormer (Video Transformer)

(%) F1 | (ms/f | (M) |evs.| d
Fig.3 Statistical Analysis

mea | (%) | rame bas
Interpretation. Both ST-GCN and the transformer

ntsd | mea ) elin
d significantly outperform the CNN-BiLSTM baseline (p <

n+s e

0.05). Late-fusion yields the best accuracy and macro-F1

Depth | 88.3 | 86.9 6.2 8.7 - -
MapNe | £14 | £1.6
t

with acceptable latency (<10 ms/frame) for 60—100 fps
pipelines on an edge GPU.

SIMULATION RESEARCH AND RESULTS

(CNN-
BiLST 5.1. Experimental Setup
M) Hardware. ToF depth camera at 30 fps, 512x424
Skeleto | 908 | 894 a1 31 0ol | 1.02 resolution; edge GPU (Orin Nano, 1024 CUDA cores),
Net 110 | 212 ) CPU baseline (8-core laptop).

Software. PyTorch implementation with mixed precision;
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depth preprocessing in CUDA kernels; graph ops via
optimized ST-GCN layers.
Protocols.

o Cross-Subject: Subjects disjoint between
train/test.

e Cross-View: Same subjects, different camera
heights/angles (+20° tilt, £30° yaw).

e Ablations: (Al) noise ¢ increased to 10 mm;
(A2) occlusion rectangles covering 10-25% of
hand/forearm; (A3) range extended to 2.5-3.5
m; (A4) skeleton dropout simulating missed
joints at 5-15%.

5.2. Main Results

Cross-Subject. DepthFormer performs best among single
streams (92.1%+0.9 acc; macro-F1 91.0%), indicating
value in long-range temporal modeling for varied user
styles. SkeletoNet (90.8%1.0) trails slightly but excels

EEINT3

on full-body gestures (e.g., “raise both arms,” “rotate”).
DepthMapNet’s compact design remains competitive
(88.3%=1.4) and is most energy-efficient.

Cross-View. Viewpoint changes amplify differences: ST-
GCN narrows the gap with the transformer because
kinematic structure transfers across views, whereas pixel-
space depth patterns shift. Fusion improves robustness,
reaching 94.6%+0.8 with fewer confusions between
similar gestures (e.g., “zoom-in” vs. “push”).

Confusion Analysis. The baseline confuses subtle finger
articulations (e.g., “OK” vs. “pinch”), where skeletons are
sparse and depth textures in fingertips matter.
DepthFormer resolves many of these due to patch-level
attention that picks up minute depth gradients along the
hand.

5.3. Robustness Studies

Noise (Al). At 0=10 mm, DepthMapNet drops —2.1 pp
accuracy; SkeletoNet drops —0.9 pp; DepthFormer —1.3
pp. Skeleton geometry is relatively stable under pixel
noise, confirming ST-GCN’s resilience.

Occlusion (A2). SkeletoNet degrades least (—1.5 pp)

because temporal graph connectivity still encodes limb

trajectories. DepthFormer loses —2.4 pp; DepthMapNet
—3.1 pp, as occlusions disrupt local textures.

Range (A3). At 3.0-3.5 m, per-pixel depth quantization
coarsens hand detail. Transformer attention over broader
context mitigates the loss (—1.7 pp), while CNN-LSTM
drops —2.6 pp; ST-GCN depends on pose quality, which
degrades at far range (—2.3 pp).

Skeleton Dropout (A4). When 10% joints are missing,
ST-GCN accuracy reduces —2.0 pp; imputing joint
locations with a small temporal autoencoder recovers
~0.8 pp.

5.4. Efficiency and Deployment

Latency & Throughput. On the edge GPU, SkeletoNet
sustains ~200 fps, DepthMapNet ~150 fps, DepthFormer
~100 fps; fusion runs ~120 fps thanks to parallel streams.
On CPU, only DepthMapNet approaches real time (~28—
35 fps).

Memory & Power. Peak GPU memory: DepthFormer 1.8
GB (T=32), SkeletoNet 0.6 GB, DepthMapNet 0.9 GB;
power draw at 15 W TDP remains within fanless
enclosures with active heat spreaders.

Quantization. Post-training INT8 quantization yields
—0.4 pp on DepthMapNet and —0.6 pp on ST-GCN;
transformer loses —1.1 pp unless fine-tuned with
quantization-aware training.

Calibration Drift. The sliding background plane
alignment reduces false motion alarms in stationary
periods by ~30%, stabilizing DMMs and improving
macro-F1 by 0.3—0.5 pp across models.

5.5. Ablation on Representations

Removing DMMs from DepthMapNet harms
performance (—0.8 pp), showing that motion summaries
complement per-frame features. Adding per-pixel depth
gradients (+0x, Oy channels) improves fingertip gestures
(+0.5 pp), modest but cheap.

5.6. Qualitative Behavior

Saliency maps from DepthFormer highlight finger pads
and wrist creases for “pinch,” whereas SkeletoNet focuses

on elbow-wrist-hand joint chains during “swipe.”
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Misclassifications often occur when users perform
gestures at off-spec speeds; temporal cropping and speed
augmentation reduce these failures.

CONCLUSION

We presented a complete design and simulation study for
gesture recognition using depth sensors and neural
networks, spanning sensor preprocessing, multi-view
representation learning, model architectures, and
deployment  constraints. ~ Three = complementary
networks—CNN-BiLSTM for compactness, ST-GCN for
kinematic reasoning, and a factorized video transformer
for long-range temporal modeling—illustrate a practical
accuracy—latency trade-space. In five-fold cross-subject
experiments over 30 gesture classes, the transformer and
ST-GCN significantly outperform a strong CNN-LSTM
baseline, and late-fusion achieves 94.6% accuracy and
93.2% macro-F1 with <10 ms/frame latency on an edge
GPU. Robustness analyses show that skeleton graphs are
least sensitive to occlusion and pixel noise, while depth-
clip models excel at fine, finger-level articulation and
long-range patterns.

Design guidance.

e Ifyour platform is compute-constrained (CPU-
only, battery), prefer CNN-LSTM and DMM
features.

e Ifyou face occlusion and background clutter,
skeleton-based ST-GCN is strong, assuming
reliable pose tracking.

e For maximum accuracy and long-horizon
gestures, factorized video transformers with
careful regularization are best, ideally fused with
skeleton cues.

e Always augment for depth-specific artifacts
(flying pixels, range scaling) and consider small,
on-device calibration to stabilize depth drift.

Limitations. Our results are simulation-based and rely on
harmonized protocols rather than a single, standardized
benchmark collected under consistent hardware. Real-

world performance will vary with sensor model,

environment (IR interference, sunlight), and user
variability.

Future work. Promising directions include (i) self-
supervised pretraining from unlabeled depth video; (ii)
adaptive multi-sensor fusion (depth + event cameras) at
the feature level; (iii) domain adaptation across sensors
via style transfer in depth space; and (iv) compressing
transformers with low-rank adapters for always-on edge

inference.
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