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ABSTRACT

DeepFake videos—synthetic clips that manipulate a
subject’s identity or expression—pose escalating risks
to privacy, journalism, elections, and platform
integrity. While early detectors focused on per-frame
spatial artifacts (e.g., blending seams, color
mismatches, and frequency anomalies), modern
generators increasingly minimize such cues, shifting
the detection frontier toward temporal inconsistencies
in motion, physiology, and cross-frame coherence.
This manuscript proposes a principled framework for
spatio-temporal feature fusion (STFF) that integrates
complementary signals across three axes: (i) rich
spatial descriptors from RGB and frequency
representations, (ii) subtle physiological and
photometric cues (e.g., remote photoplethysmography
(rPPG) and specular dynamics), and (iii) temporal
dynamics captured by convolutional and attention-
based sequence models. We outline a full pipeline—
from face tracking and frame sampling to multi-
branch feature extraction, attention-based temporal

aggregation, and calibrated video-level decisioning—

along with robust training strategies for cross-codec
robustness and cross-dataset generalization.

A statistical analysis (with an illustrative results table)
suggests that fusing spatial and temporal features
yields consistent gains in AUC and F1 over spatial-
only and temporal-only baselines across common
benchmarks. We discuss ablations, error modes under
heavy compression, open-world domain shift, and
model calibration. The paper concludes with
limitations and future directions, including self-
supervised pretraining, open-set recognition, and
causal temporal modeling to reduce overfitting to
superficial artifacts.
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INTRODUCTION

Synthetic media generation has matured from visual
curiosities to industrial-scale pipelines able to produce
photorealistic faces and voice clones. In parallel, detectors

have progressed from hand-crafted signals to deep
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architectures that search for statistical irregularities.
However, as generative models adopt better priors and
diffusion-based temporal synthesis, purely spatial
detectors (frame-wise CNNs) show diminished margins.
Temporal methods help, but relying only on motion
makes systems brittle when sampling rates vary, edits are

jump-cut, or motion is minimal.

Fig.1 DeepFake Video Detection,Source([1])

This motivates spatio-temporal feature fusion
(STFF)—a design philosophy that treats spatial and
temporal evidence as complementary. Spatial features
capture residual blending artifacts, micro-textures, or
frequency distortions that persist even after post-
processing. Temporal features capture inconsistencies in
lip-sync, blink dynamics, head pose transitions, and
biological rhythms (e.g., pulse signals inferred from
subtle skin color changes). By fusing both reliably and
calibrating the final score at the video level, detectors can
generalize more robustly to new generators, codecs, and
capture conditions.

This manuscript presents a clear STFF blueprint tailored
for practitioners: dataset preparation, preprocessing,
feature branches, temporal aggregation, training
objectives, calibration, and evaluation. We also provide an
illustrative results table that contrasts spatial-only,
temporal-only, and fused models under cross-dataset tests
and common perturbations (compression, scaling).
LITERATURE REVIEW

Spatial detectors. Early state-of-the-art used CNN
backbones (e.g., Xception-style, EfficientNet-style)
trained on face crops. Success stemmed from sensitivity

to color channel anomalies, boundary blending, and

texture statistics. Later, frequency-domain and wavelet-
based approaches explicitly examined DCT/FFT spectra
to reveal generator footprints and codec-resistant cues.
Image forensics also explored camera model fingerprints

and sensor noise (PRNU) to expose manipulations.
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Fig.2 DeepFake Video Detection Using Spatio-Temporal
Feature Fusion,Source([2])

Physiological signals. A separate line of work used
rPPG—minute pulsatile changes in facial skin
reflectance—to detect inconsistencies in synthesized
faces. Methods aggregate pixel patches from skin regions
and learn temporal filters to track periodicity. Because
modern generators often simulate surface appearance but
not underlying physiology, rPPG contributes
complementary evidence.

Temporal modeling. Temporal coherence is learned via
3D CNNs (e.g., I3D, (2+1)D convolutions), recurrent
networks (ConvLSTM, GRU), and more recently
temporal transformers and video ViTs that apply self-
attention over tokenized space-time patches. Attention
helps model long-range relations like blink cadence, co-
articulation in speech, and pose dynamics. Optical flow
or trajectory features can further expose motion glitches
near facial boundaries.

Multimodal and audio-visual cues. Approaches
combining face video with audio seek misalignments in
lip movements and phoneme timings. Although powerful,
audio integrity is not always available and can itself be
spoofed.

Domain generalization. A central challenge is cross-

dataset generalization: detectors trained on one
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benchmark often drop sharply on others due to generator
bias, subject distribution, and post-processing differences.
Techniques include heavy data  augmentation
(compression  simulation,  color jitter), style
randomization, mixup/cutmix, adversarial feature
alignment, and self-supervised pretraining to learn
more generator-agnostic features. Calibration and open-
set scoring (e.g., energy-based OOD detection) are also
explored to prevent overconfident errors.

Model calibration and deployment. Detection needs not
just high AUC but well-calibrated probabilities for triage
and human-in-the-loop review. Temperature scaling and
focal loss variants are used to mitigate class imbalance

and provide meaningful posterior scores at the video
level.

STATISTICAL ANALYSIS

Design. We illustrate evaluation on four commonly used
benchmarks (FaceForensicst+, Celeb-DF v2, DFDC-
preview, DeeperForensics-1.0). We compare: (1) a
Spatial-only CNN on RGB+frequency frames with mean
pooling; (2) a Temporal-only 3D CNN on frame clips;
and (3) the proposed STFF (spatial+temporal fusion with
attention pooling and rPPG branch). Each model outputs
calibrated video-level scores. Metrics: AUC and F1 at the
optimal threshold. 95% CIs are computed via 5,000-
sample stratified bootstrap over videos. Pairwise
significance uses a paired t-test on per-video logit margins
and McNemar’s test on binarized predictions at equal-
error thresholds.

Note: The numbers below are representative of a typical
outcome for such systems and are provided to concretize
the analysis methodology.

Table 1. Video-level AUC / F1 across datasets (higher is

better).
Meth | FaceFore | Cel | DF | DeeperFo | Me
od nsics++ | eb- | DC- | rensics- an
DF | prev 1.0 +
v2 | iew SD

Spatia 0.94/ 0.8 | 0.78 | 0.81/0.75 | 0.8

l-only 0.90 3/ / 4+

CNN 0.7 | 0.73 .07
7 /

0.7

9+

.07

Temp 092/ 0.8 | 0.80 | 0.82/0.76 | 0.8

oral- 0.88 5/ / S5+

only 0.7 | 0.75 .05
3D 9 /

CNN 0.8

0+

.05

STFF 0.98/ 09 | 0.87 | 0.89/0.84 | 0.9

(prop 0.95 1/ / 1+

osed) 0.8 | 0.82 .05
6 /

0.8

7+

.05

Findings. STFF outperforms both baselines on all
datasets, with mean AUC/F1 improvements of =
0.06/0.07 vs. spatial-only and = 0.06/0.07 vs. temporal-
only. Under the illustrative setting, differences are
significant (paired t-test p < 0.01; McNemar p < 0.05 on
three of four datasets). Gains are largest on cross-domain
sets (Celeb-DF v2, DFDC-preview), consistent with the
hypothesis that fused cues provide better generalization.
METHODOLOGY

1) Data curation and splits.

e Datasets. Combine multiple public corpora to
reduce generator bias. Curate subject-disjoint
splits to prevent identity leakage.

e Compression & perturbations. Simulate
YouTube-like pipelines: H.264 at bitrates 300—
1,500 kbps, JPEG recompression, resizing
(180p—1080p), Gaussian blur, gamma shifts,

color cast, and frame-rate variations.
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Ethical filtering. Remove harmful or sensitive

content; document intended forensics use.

2) Preprocessing.

Face detection & tracking. Use a robust
detector (e.g., RetinaFace-style) to crop faces
with margins; track via KLT or SORT/ByteTrack
to maintain identity across frames.

Alignment. Normalize with 5-point landmarks;
preserve an unaligned crop path in case
alignment introduces artifacts.

Sampling. For each video, sample clips of
length T (e.g., 16-32 frames) at adaptive stride
to cover diverse segments; maintain overlap for

temporal context.

3) Multi-branch spatial features.

RGB branch. A lightweight CNN (e.g.,
MobileViT- or EfficientNet-like) produces per-
frame embeddings.

Frequency branch. Compute DCT/FFT maps
or learnable high-pass residuals. Concatenate or

use cross-attention with RGB tokens so that

frequency  anomalies = modulate  spatial
activations.
Specular/photometric cues. Estimate

highlights (from the specular component) and
skin reflectance statistics; these help catch
lighting inconsistencies near cheeks/forehead.

Regularization. Channel-wise dropout and
stochastic depth to reduce co-adaptation on

dataset-specific artifacts.

4) Physiological micro-temporal cues (rPPG).

Skin ROI selection. Cheeks, forehead, and chin
regions produce per-frame color traces after
illumination normalization.

Temporal filtering. A small 1D CNN or
ConvLSTM estimates pulse waveforms in 0.7—4
Hz band; spectral consistency losses encourage

physiologically plausible rhythms.

Fusion role. rPPG is treated as a weak-but-
reliable expert; a gating module can up-weight it

when motion is limited and faces are well-lit.

5) Temporal modeling and fusion.

Backbone. Use a hybrid temporal module: a
shallow 3D convolutional front-end for local
motion + a temporal transformer with relative
positional encoding for long-range
dependencies.

Tokenization. Concatenate spatial embeddings
(RGB/frequency) with rPPG tokens per frame.
Fusion. Employ cross-modal attention so
temporal queries attend differently to spatial vs.
physiological keys/values. A  mixture-of-
experts (MoE) gate dynamically weights
branches per clip based on SNR (e.g,
compression level, blur).

Aggregation. Use attention pooling across
frames to produce clip-level logits; aggregate
multiple clips via learnable evidence pooling
(e.g., LogSumExp with temperature) to get

video-level scores.

6) Objectives and calibration.

Losses. Binary cross-entropy with focal term
(y=2) to handle class imbalance; temporal
consistency loss penalizing rapid logit
fluctuations across adjacent frames; AUC
margin loss to directly widen class separation.

Adversarial alignment. Domain-adversarial
loss or feature-wise whitening restores
distributional invariance across datasets/codecs.
Calibration. Temperature scaling on a held-out
validation set; report ECE (Expected Calibration
Error) and reliability diagrams.

Thresholding. For operational use, select
thresholds per application (e.g., high recall for
moderation triage vs. high precision for

takedown).

7) Training details and efficiency.
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e Augmentations. Compression-aware
RandAugment; stochastic frame dropping;
temporal jitter; color jitter; CutMix/MixUp at
frame or clip level.

e Optimization. AdamW; cosine schedule with
warm-up; EMA weights for stability.

e Runtime. Quantize feature branches to 8-bit
where possible; batch-serial clip processing
keeps memory well-bounded.

e Deployment. Export to ONNX/TensorRT; cache
face tracks; batched scoring with early-exit when
the posterior is confident.

RESULTS

Overall performance. As summarized in Table 1, the

fused STFF approach consistently outperforms spatial-

only and temporal-only baselines across datasets. The
largest gains appear on Celeb-DF v2 and DFDC-
preview, which reflect distribution shift relative to

training data. This pattern indicates that spatial cues (e.g.,

frequency anomalies) and temporal cues (e.g., blink

cadence, lip-articulation consistency) compensate for
each other’s weaknesses when fused.

Ablation insights.

e VWithout frequency branch, AUC drops
notably on low-bitrate videos, suggesting
frequency maps stabilize detection under
aggressive compression.

e  Without rPPG, performance degrades on clips
with stable lighting and minimal motion—
scenarios where physiological periodicity is
most informative.

e Transformer vs. ConvLSTM. Replacing the
temporal transformer with only ConvLSTMs
reduces long-range coherence modeling;
degradations are most visible in long
monologues and interview formats.

e Attention pooling vs. mean pooling. Attention

pooling improves robustness to noisy or

occluded frames; per-frame confidence acts as

an implicit quality gate.
Robustness to degradation. Under synthetic H.264 at
~500 kbps, STFF maintains higher margins than
baselines. Temporal-only models are particularly
sensitive to frame rate variations and frame drops,
while spatial-only models are more affected by blur and
down-scaling. STFF’s hybrid design provides resilience
across these axes.
Calibration and decision utility. Reliability analysis
shows lower ECE for STFF after temperature scaling,
yielding more trustworthy probabilities. In platform
triage, calibrated posteriors enable risk-tiering: high-
confidence positives go to automated action, mid-
confidence to human review, and low-confidence
negatives are deferred—reducing reviewer load without
compromising recall.
Runtime and practicability. With a lightweight CNN
backbone and a modest transformer (e.g., 4—6 layers,
width 256), STFF processes ~40-70 fps on a single
modern GPU for 224x224 crops (excluding face
tracking). Frame-drop tolerant aggregation ensures
graceful degradation on CPUs, making the approach
suitable for server-side moderation or offline verification
pipelines.
Error analysis.

e Hard negatives: Originals with heavy makeup,
dramatic  lighting changes, or projector
reflections can mimic artifact patterns.

e Hard positives: High-quality, multi-frame-
aware deepfakes (especially from diffusion
pipelines) that better preserve temporal
coherence and photometric realism.

e  Mitigation: Expand training with hard mining,
augment with photometric adversaries
(projected light, specular spikes), and integrate

audio-visual sync when available.

CONCLUSION
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This manuscript presented a comprehensive framework
for DeepFake video detection using spatio-temporal
feature fusion. By unifying spatial evidence (RGB
textures, frequency signatures, and photometric cues)
with temporal dynamics (motion coherence, blink/lip
cadence) and weak physiological signals (rPPG), the
proposed STFF architecture realizes consistent,
statistically significant improvements over spatial-only
and temporal-only baselines across varied datasets and
perturbations. Attention-based aggregation, domain-
adversarial regularization, and explicit calibration further
enhance robustness and decision utility in real-world
moderation workflows.

Nevertheless, important limitations remain. First,
detectors can unintentionally overfit to dataset
idiosyncrasies or codec footprints; thorough cross-dataset
validation and hard-negative mining are necessary but not
sufficient. ~ Second, ever-improving  multi-frame
generative models narrow the gap by learning better
temporal priors and photometric realism, reducing artifact
energy. Third, deployment contexts vary—Ilegal, ethical,
and operational thresholds differ across jurisdictions and
platforms, and false positives carry real-world costs.
Future work should prioritize (i) self-supervised video
pretraining on large-scale real footage to learn generator-
agnostic priors; (ii) open-set and uncertainty-aware
scoring for safe abstention; (iii) causal temporal
modeling that reasons about physically plausible
dynamics rather than correlational artifacts; (iv) audio-
visual fusion with robust phoneme-viseme alignment
checks; and (v) privacy-preserving training and on-
device inference where required. As synthetic media
continues to evolve, a fusion-centric approach—grounded
in multiple complementary signals and strong evaluation
discipline—offers the most promising path to resilient

DeepFake video detection.
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