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ABSTRACT

Healthcare organizations generate vast quantities of
heterogeneous data—electronic health records
(EHRs), claims, laboratory results, imaging metadata,
device telemetry, and patient-reported outcomes.
Turning these streams into timely, reliable predictions
can reduce avoidable hospitalizations, optimize care
pathways, and improve resource allocation. This
manuscript presents an end-to-end approach to
healthcare predictive analytics using Google BigQuery
for scalable data engineering and TensorFlow for
model training and deployment. We focus on a
representative use case—predicting 30-day hospital
readmission at discharge—because it is clinically
meaningful and requires temporal reasoning across
structured events. We outline a cloud-native
architecture that ingests batch and streaming data;
performs privacy-preserving preprocessing; engineers
features using SQL and BigQuery user-defined
functions; and exports training shards to TensorFlow
via the BigQuery Storage API. We compare three

models: a regularized logistic regression baseline, a

gradient-boosted tree model, and a sequence-aware

deep neural network (LSTM-based).
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Fig.1 Healthcare Predictive Analytics,Source([1])
The simulation study uses a large synthetic cohort
with realistic class imbalance and missingness
patterns to evaluate scalability, latency, and learning

curves without exposing protected health information
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(PHI). Results show that the sequence model improves
AUC and precision-recall performance while
maintaining calibration, and that BigQuery-centric
feature computation reduces overall time-to-model by
minimizing data movement. We discuss governance,
auditability, interpretability, and MLOps concerns,
including lineage, bias assessment, differential privacy
options, and continuous evaluation. The paper
concludes with practical guidance for productionizing
the pipeline in safety-critical settings, limitations of the
simulation, and directions for prospective validation

with real-world data.
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INTRODUCTION

Modern hospitals and health systems routinely capture
millions of events per year across admissions, diagnoses,
procedures, medications, vital signs, laboratory results,
imaging orders, and encounters across settings. The size,
variety, and velocity of these data make conventional
analytics pipelines fragile and slow. Data engineers must
repeatedly extract, transform, and load (ETL) records into
bespoke modeling marts; data scientists must duplicate
preprocessing code in Python or R; and operational teams
struggle to keep models synchronized with evolving
clinical workflows. These gaps are particularly costly in
use cases where timeliness matters: early warning of
deterioration, sepsis risk, length-of-stay forecasting,
emergency department boarding, no-show prediction, and

30-day readmissions.
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Fig.2 Analytics Using BigQuery and
TensorFlow,Source([2])

Cloud data warehouses such as BigQuery offer a different
operating model. Instead of moving data to compute,
BigQuery brings distributed SQL compute to the data
with separation of storage and compute, columnar
formats, and automatic scaling. Many steps of feature
engineering that would traditionally run in notebooks can
be expressed as SQL or user-defined functions (UDFs)
and executed close to source tables, reducing latency and
operational overhead. TensorFlow complements this by
providing highly optimized training loops, a rich
ecosystem for sequence models and transfer learning, and
standard mechanisms for serving models in real time.
Together, they enable a consistent lineage from raw data
to prediction: ingestion — curation — feature stores —
model training — validation — deployment —
monitoring.

This manuscript contributes a practical, end-to-end
blueprint for healthcare predictive analytics centered on
BigQuery and TensorFlow. We articulate the data model,
privacy controls, feature-engineering patterns, model
architectures, and evaluation protocols. A simulated study
is used to characterize performance and scalability
without PHI, but the design intentionally mirrors realistic

EHR schemas and operational constraints.
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LITERATURE REVIEW

Predictive analytics in healthcare has shifted from hand-
crafted scores to machine learning and deep learning over
the past decade. Early readmission risk tools (e.g., LACE,
HOSPITAL) were transparent but limited by linearity and
small feature sets. Subsequent work introduced gradient-
boosted trees to model nonlinear interactions among
comorbidities, medication histories, and utilization
patterns, improving discriminative ability but often
lacking temporal context. More recent research has
emphasized sequential models—RNNs, LSTMs, GRUs,
and Transformers—to capture patient trajectories across
encounters. These models better represent irregular
sampling, episode boundaries, and time gaps, which are
characteristic of EHR data.

Alongside modeling advances, the data-engineering
substrate has evolved. Traditional on-prem data
warehouses required ETL pipelines that duplicated logic
across analytic teams and made feature drift difficult to
control. Cloud data warehouses with serverless
autoscaling (such as BigQuery) allow organizations to
centralize data and govern transformations as SQL,
bringing reproducibility and observability to the forefront.
Feature stores emerged to ensure training/serving parity,
with point-in-time correctness and historical backfills to
avoid leakage. MLOps frameworks add versioning,
experiment tracking, continuous training, and monitoring
of data and model drift.

Methodologically, the literature increasingly stresses
evaluation beyond AUC: calibration (E/O, Brier score,
reliability diagrams), clinical utility (decision curves, net
benefit), fairness (subgroup performance), and robustness
to missingness and distribution shift. Privacy-enhancing
techniques—de-identification, pseudonymization, k-
anonymity thresholds, and differential privacy—are now
commonly discussed, acknowledging regulatory
landscapes (e.g., HIPAA) and ethical imperatives. This
paper integrates those strands into a concrete,

reproducible approach using BigQuery and TensorFlow.

METHODOLOGY
Problem Definition
Task: predict readmission within 30 days of discharge for
adult inpatients.
Outcome: binary label indicating whether a subsequent
inpatient admission occurs within 30 days of the index
discharge.
Prediction time: at discharge (prospective use for care-
transition planning).
Population: adults (>18 years), medical and surgical
DRGs; deaths excluded from readmission labeling.
Data Sources and Curation in BigQuery
Data are organized into standard analytics tables: patients,
encounters, diagnoses, procedures, meds admin,
lab_results, vitals, and claims. Streams from integration
engines (HL7/FHIR) land in staging datasets and are
normalized to analytics schemas with metadata columns
such as event_timestamp, ingest_timestamp,
source_system, and version. All tables include
organization-wide pseudonymous patient id keys, and
direct identifiers are stored separately with restricted
access.
Governance & Privacy. Access is controlled via
BigQuery IAM roles; column-level security masks
sensitive fields; row-level policies restrict access for
pediatric or sensitive cohorts; and audit logs capture query
provenance. Training datasets are constructed with date
bounds and point-in-time joins to prevent label leakage
(no features generated using post-discharge information
relative to the index).
Feature Engineering in SQL
Feature transformations are expressed in reusable SQL
views:

e Demographics: age at discharge, sex, insurance

type.
e  Comorbidities: rolling 1-year counts and binary
flags for Charlson/Elixhauser categories using

ICD groupers.
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e Utilization: number of ED visits, prior
admissions, average length of stay, time since
last discharge.

e Laboratory trends: last value, slope over last N
values, abnormal flags for key labs (e.g.,
creatinine, Hb, WBC).

e  Medication signals: counts of high-risk meds,
polypharmacy indicators, adherence proxies.

e Social determinants (if available): area-level
deprivation indices.

e Temporal sequences: encounter-level
embeddings—ordered lists of diagnosis and
procedure tokens in the preceding year, mapped
to indices for sequence models.

BigQuery window functions compute temporal

aggregates; user-defined functions handle tokenization

and bucketing; and materialized views cache high-cost
features with scheduled refreshes.

Data Export to TensorFlow

Two strategies are used:

1. Direct reading: TensorFlow’s I/O with the
BigQuery Storage APl streams training
examples as tf.Example records (suitable for
prototyping).

2. TFRecords via Cloud Storage: Feature tables
are exported to Parquet and converted to
TFRecords with schema stored in a feature
registry. Sharding by patient_id enables parallel
training.  Splits  (train/validation/test) are
stratified by hospital and calendar time to
simulate deployment in new periods and to
reduce overfitting to local practice patterns.

Models

We compare three families:

o Logistic Regression (LR): L2-regularized,
trained with TensorFlow; strong baseline with
interpretable coefficients.

o Gradient-Boosted Trees (GBT): tree

ensembles (e.g., boosted decision trees

implemented with TensorFlow Decision Forests)
for nonlinear tabular interactions.

e Sequence-Aware DNN (LSTM):

o Inputs: (a) static/aggregate features; (b)
tokenized temporal sequences of
diagnoses/procedures; (c) optional
short vitals time series from the index
admission.

o Architecture: embedding layers for
codes — bi-directional LSTM (or
GRU) — attention pooling —
concatenation with static features —
two dense layers with batch
normalization and dropout — sigmoid
output.

o Regularization:  dropout  0.3-0.5;
weight decay; early stopping on
validation AUPRC.

o Class imbalance handling: focal loss or
class weights based on inverse
prevalence.

Hyperparameters are tuned via randomized search
(learning rate, hidden units, sequence length, batch size).
All experiments fix seeds and record configurations for
reproducibility.

Training, Validation, and Serving

e  Validation: time-based split with the most
recent quarter as hold-out; five-fold cross-
validation on preceding quarters.

e  Metrics: AUROC, AUPRC (for imbalanced
outcomes), F1 at clinically meaningful
thresholds, Brier score, Expected Calibration
Error (ECE), and decision-curve net benefit.

e Calibration: temperature scaling on validation;
reliability diagrams verified on the test set.

o Explainability: Integrated Gradients (for neural
network inputs) and feature permutation
importance; code embeddings are visualized to

detect clinically coherent neighborhoods.
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e Serving: models exported as SavedModel,;

inference hosted via TensorFlow Serving or Model
Vertex Al Prediction; a lightweight BigQuery g? o1 0.46 0.5
feature view supports online scoring with point-
in-time correctness. Predictions and features are I I
0.165 0.153 0.147
logged back to BigQuery for monitoring (data
drift, performance decay, fairness across . . .
subgroups). 08)@6,.- r @
STATISTICAL ANALYSIS ‘ é\&g’o OQJ&Q’/
We simulate a cohort of 250,000 index discharges with a 0@6\ ®\°)®Q
14% readmission rate. Missingness patterns are injected Vé}
(e.g., labs missing not at random). The evaluation uses the BMF1@0.30risk M Brier Score

final test window (last quarter). Confidence intervals are

computed via 1,000 bootstrap resamples at the encounter Fig:3 Test-set performance for three model families.

level. AUROC differences are compared with DeLong’s Notes: (1) Threshold 0.30  chosen to approximate a
referral capacity constraint for transitional care teams; (2)
LSTM vs GBT AUROC p < 0.01 (DeLong); (3) All

models calibrated post-hoc; (4) ECE computed with 10

test; AUPRC uncertainty uses bootstrap. Calibration is
summarized by Brier score (lower is better) and ECE
(binning-based).

Table 1. Test-set performance for three model families. cqual-frequency bins.

Model AURO | AUPR | F1 | Brie | EC SIMULATION RESEARCH AND RESULTS
C (95% C @ r E Simulation Design
(e))} (95% | 0.3 | Scor | (%) Because PHI cannot be disclosed and to avoid data-
CI) 0 e sharing barriers, we constructed a synthetic yet clinically
ris plausible dataset reflecting realistic utilization,
Kk comorbidity distributions, and temporal patterns.
Logistic | 0.744 | 0321 [ 04 [ 0.16 | 4.8 1. Population generator.
Regressio | (0.739— | (0.312— | 1 5 o Draw patient ages from a truncated
n (LR) 0.749) 0.331) normal (u=61, c=14, range 18-95).
Gradient- 0.784 0366 | 04 | 015 | 3.2 o  Assign comorbidities using a correlated
Boosted | (0.780— | (0.357— | 6 3 Bernoulli process calibrated to produce
Trees 0.789) 0.376) multimorbidity (e.g., diabetes
(GBT) correlated with CKD and HF).
LSTM 0.812 0.402 05 | 014 | 2.6 o Insurance categories sampled by age
(sequence | (0.808— | (0.392— | 0 | 7 and employment proxies.
_aware 0.816) 0.411) 2. Encounter process.
DNN) o For each patient, generate a Poisson

number of encounters per year with
over-dispersion (negative binomial) to

reflect super-utilizers.
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o For each index discharge, generate a
time-to-event hazard for readmission
based on a Cox-like proportional
hazards structure with contributions
from recent utilization, lab trends, and
comorbidities. The binary label is 1 if
the simulated event occurs within 30
days.

3. Events and measurements.

o Labs and vitals are irregularly sampled
with missing-not-at-random
mechanisms: sicker patients have more
labs drawn.

o Diagnosis and procedure codes are
sampled from learned frequency
distributions ~ with  co-occurrence
modeled by a latent topic mechanism to
create realistic sequences.

4. Data generation in BigQuery.

o Synthetic tables are produced with
GENERATE DATE ARRAY and
RAND() seeded per patient, enabling
reproducible partitions.

o SQL UDFs implement hazard sampling
and code co-occurrence; arrays of
codes and time stamps are created
directly in BigQuery.

5. Scale and partitions.

o 250k index discharges across 3 years;
training on years 1-2.5, validation on
the next quarter, testing on the last
quarter.

o Feature computation executed as
materialized  views;  export to
TFRecords for training.

Computational Setup
e BigQuery: standard edition, slot autoscaling

enabled; query execution plans logged.

e TensorFlow training: distributed training on
two workers with GPU acceleration; mixed
precision enabled.

o Reproducibility: fixed seeds, containerized
training environment; metrics and artifacts
tracked for every run.

Results of the Simulation

Predictive  performance. @The LSTM  model
outperformed baseline LR and GBT across AUROC and
AUPRC (Table 1), particularly benefiting from
diagnosis/procedure sequences and recent utilization
trajectories. Gains in F1 at the operational threshold
indicate better precision without sacrificing recall, which
is crucial for finite care-management capacity.
Calibration and clinical utility. Post-hoc temperature
scaling yielded low ECE for all models, with the LSTM
demonstrating the best reliability. Decision-curve analysis
(not tabulated) showed higher net benefit for the LSTM
for thresholds between 0.2 and 0.5, the region aligned
with referral criteria for transitional care teams. The Brier
score improvements, though modest, suggest better
probability estimates that could support shared decision-
making.

Ablation studies. Removing temporal sequences reduced
LSTM AUROC from 0.812 to 0.789, indicating that much
of the lift comes from trajectory modeling rather than
static aggregates. Excluding lab-trend features (keeping
last-value only) reduced AUPRC by ~0.02 absolute,
highlighting the importance of slope and instability
indicators.

Scalability and latency. End-to-end feature
recomputation (all patients) completed within a few
minutes on cached materialized views and under an hour
on cold caches at the simulated scale, dominated by
windowed lab/vital aggregations. Direct streaming via the
BigQuery Storage API sustained high record throughput
for online training; however, exporting to TFRecords
yielded more stable training throughput, especially with

larger batch sizes.
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Robustness to missingness. Models trained with explicit
missingness indicators and simple imputation (median for
continuous, “unknown” token for categorical) performed
better than models trained after listwise deletion. The
LSTM architecture was resilient to irregular coding
sequences because masking and attention pooling
permitted variable-length inputs.

Fairness and subgroup analysis. In the simulation,
subgroup disparities were small by construction
(synthetic data do not encode structural inequities unless
imposed). In real deployments, subgroup metrics (AUC,
calibration) must be computed by age band, sex, payer
type, and hospital service lines to detect and mitigate
disparities.

Operational considerations. Because the prediction time
is at discharge, feature freshness requirements are modest
(hours rather than seconds). The pipeline is designed so
that discharge events trigger feature materialization and
batch scoring, with predictions appended to a
readmission_risk predictions table. Clinicians can review
top contributing features via explanation tooling surfaced
in dashboards.

DISCUSSION

The results illustrate that a BigQuery-centered data layer
and TensorFlow modeling stack can deliver accurate,
calibrated predictions at healthcare scale. Several design
choices are pivotal:

1. Point-in-time correctness. Historical feature
backfills that respect event timestamps are non-
negotiable to prevent leakage. BigQuery
window functions and array operations make it
straightforward to  define these rules
declaratively.

2. Minimal data movement. Performing
aggregation and feature logic in SQL avoids
duplicating pipelines across languages and
reduces security surfaces. Exports are limited to
the final feature tables for training and a compact

online feature view for serving.

3. Sequence modeling. Patient trajectories contain
predictive signal beyond static comorbidity
flags. Embedding code sequences with
LSTM/attention improved discrimination and
precision-recall, while still allowing
interpretability via token attributions.

4. Calibration and operational thresholds. Well-
calibrated probabilities matter more than rank
ordering when resources are constrained.
Systematic calibration and threshold tuning with
clinicians ensures that model output maps to
action.

5. MLOps and governance. Comprehensive
lineage—raw sources, SQL versions, model
artifacts, evaluation reports—supports audits
and rollbacks. Continuous evaluation detects
drift, and shadow deployment reduces risk
before full rollout.

6. Privacy by design. Pseudonymization,
column/row-level security, and audit logging are
baseline controls. Differential privacy can be
layered for the training phase when policy
requires bounds on information leakage from
rare patterns.

CONCLUSION

This manuscript presented a practical, reproducible
pathway for building healthcare predictive analytics with
BigQuery and TensorFlow, using 30-day readmission
prediction as a guiding use case. The pipeline begins with
governance-aware ingestion and curation, expressing
feature logic as SQL in BigQuery to ensure point-in-time
correctness and reduce data movement. Training
leverages TensorFlow’s flexibility for both tabular and
sequential inputs, with calibrated outputs and clinically
aligned thresholds. In simulated studies mirroring
realistic EHR dynamics, a sequence-aware deep model
achieved superior discrimination and calibration relative

to logistic regression and gradient-boosted trees, while the
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BigQuery-centric design delivered favorable scalability
and operational simplicity.

The approach is production-ready in several respects—
lineage, monitoring, and explainability—but important
limitations remain. Simulation cannot capture all nuances
of coding practices, care pathways, or unobserved
confounders that affect readmissions; real-world
validation with prospective data is essential. Additionally,
subgroup fairness must be examined on genuine patient
cohorts, with bias mitigation plans co-designed with
clinicians and compliance officers. Finally, clinical
integration—alert design, workflow embedding, and
feedback loops—determines realized value as much as
AUROC.

Future work should include: (1) prospective silent
deployment to quantify drift and recalibration cadence;
(2) evaluation of Transformer-based sequence encoders
for longer histories and multimodal inputs (notes,
images); (3) cost-effectiveness analysis linking risk
thresholds to avoided readmissions and resource use; and
(4) privacy-preserving training (federated learning or
differentially private SGD) to enable cross-institutional
collaboration without centralizing PHI.

By combining declarative, scalable data engineering
(BigQuery) with flexible, high-performance modeling
(TensorFlow), healthcare organizations can move from
proof-of-concept notebooks to robust, auditable

prediction services that support safer, more equitable

care—without sacrificing maintainability or governance.
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