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ABSTRACT 

Healthcare organizations generate vast quantities of 

heterogeneous data—electronic health records 

(EHRs), claims, laboratory results, imaging metadata, 

device telemetry, and patient-reported outcomes. 

Turning these streams into timely, reliable predictions 

can reduce avoidable hospitalizations, optimize care 

pathways, and improve resource allocation. This 

manuscript presents an end-to-end approach to 

healthcare predictive analytics using Google BigQuery 

for scalable data engineering and TensorFlow for 

model training and deployment. We focus on a 

representative use case—predicting 30-day hospital 

readmission at discharge—because it is clinically 

meaningful and requires temporal reasoning across 

structured events. We outline a cloud-native 

architecture that ingests batch and streaming data; 

performs privacy-preserving preprocessing; engineers 

features using SQL and BigQuery user-defined 

functions; and exports training shards to TensorFlow 

via the BigQuery Storage API. We compare three 

models: a regularized logistic regression baseline, a 

gradient-boosted tree model, and a sequence-aware 

deep neural network (LSTM-based).  

 

Fig.1 Healthcare Predictive Analytics,Source([1]) 

The simulation study uses a large synthetic cohort 

with realistic class imbalance and missingness 

patterns to evaluate scalability, latency, and learning 

curves without exposing protected health information 
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(PHI). Results show that the sequence model improves 

AUC and precision-recall performance while 

maintaining calibration, and that BigQuery-centric 

feature computation reduces overall time-to-model by 

minimizing data movement. We discuss governance, 

auditability, interpretability, and MLOps concerns, 

including lineage, bias assessment, differential privacy 

options, and continuous evaluation. The paper 

concludes with practical guidance for productionizing 

the pipeline in safety-critical settings, limitations of the 

simulation, and directions for prospective validation 

with real-world data. 
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INTRODUCTION 

Modern hospitals and health systems routinely capture 

millions of events per year across admissions, diagnoses, 

procedures, medications, vital signs, laboratory results, 

imaging orders, and encounters across settings. The size, 

variety, and velocity of these data make conventional 

analytics pipelines fragile and slow. Data engineers must 

repeatedly extract, transform, and load (ETL) records into 

bespoke modeling marts; data scientists must duplicate 

preprocessing code in Python or R; and operational teams 

struggle to keep models synchronized with evolving 

clinical workflows. These gaps are particularly costly in 

use cases where timeliness matters: early warning of 

deterioration, sepsis risk, length-of-stay forecasting, 

emergency department boarding, no-show prediction, and 

30-day readmissions. 

 

Fig.2 Analytics Using BigQuery and 

TensorFlow,Source([2]) 

Cloud data warehouses such as BigQuery offer a different 

operating model. Instead of moving data to compute, 

BigQuery brings distributed SQL compute to the data 

with separation of storage and compute, columnar 

formats, and automatic scaling. Many steps of feature 

engineering that would traditionally run in notebooks can 

be expressed as SQL or user-defined functions (UDFs) 

and executed close to source tables, reducing latency and 

operational overhead. TensorFlow complements this by 

providing highly optimized training loops, a rich 

ecosystem for sequence models and transfer learning, and 

standard mechanisms for serving models in real time. 

Together, they enable a consistent lineage from raw data 

to prediction: ingestion → curation → feature stores → 

model training → validation → deployment → 

monitoring. 

This manuscript contributes a practical, end-to-end 

blueprint for healthcare predictive analytics centered on 

BigQuery and TensorFlow. We articulate the data model, 

privacy controls, feature-engineering patterns, model 

architectures, and evaluation protocols. A simulated study 

is used to characterize performance and scalability 

without PHI, but the design intentionally mirrors realistic 

EHR schemas and operational constraints. 
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LITERATURE REVIEW 

Predictive analytics in healthcare has shifted from hand-

crafted scores to machine learning and deep learning over 

the past decade. Early readmission risk tools (e.g., LACE, 

HOSPITAL) were transparent but limited by linearity and 

small feature sets. Subsequent work introduced gradient-

boosted trees to model nonlinear interactions among 

comorbidities, medication histories, and utilization 

patterns, improving discriminative ability but often 

lacking temporal context. More recent research has 

emphasized sequential models—RNNs, LSTMs, GRUs, 

and Transformers—to capture patient trajectories across 

encounters. These models better represent irregular 

sampling, episode boundaries, and time gaps, which are 

characteristic of EHR data. 

Alongside modeling advances, the data-engineering 

substrate has evolved. Traditional on-prem data 

warehouses required ETL pipelines that duplicated logic 

across analytic teams and made feature drift difficult to 

control. Cloud data warehouses with serverless 

autoscaling (such as BigQuery) allow organizations to 

centralize data and govern transformations as SQL, 

bringing reproducibility and observability to the forefront. 

Feature stores emerged to ensure training/serving parity, 

with point-in-time correctness and historical backfills to 

avoid leakage. MLOps frameworks add versioning, 

experiment tracking, continuous training, and monitoring 

of data and model drift. 

Methodologically, the literature increasingly stresses 

evaluation beyond AUC: calibration (E/O, Brier score, 

reliability diagrams), clinical utility (decision curves, net 

benefit), fairness (subgroup performance), and robustness 

to missingness and distribution shift. Privacy-enhancing 

techniques—de-identification, pseudonymization, k-

anonymity thresholds, and differential privacy—are now 

commonly discussed, acknowledging regulatory 

landscapes (e.g., HIPAA) and ethical imperatives. This 

paper integrates those strands into a concrete, 

reproducible approach using BigQuery and TensorFlow. 

METHODOLOGY 

Problem Definition 

Task: predict readmission within 30 days of discharge for 

adult inpatients.  

Outcome: binary label indicating whether a subsequent 

inpatient admission occurs within 30 days of the index 

discharge. 

Prediction time: at discharge (prospective use for care-

transition planning).  

Population: adults (≥18 years), medical and surgical 

DRGs; deaths excluded from readmission labeling. 

Data Sources and Curation in BigQuery 

Data are organized into standard analytics tables: patients, 

encounters, diagnoses, procedures, meds_admin, 

lab_results, vitals, and claims. Streams from integration 

engines (HL7/FHIR) land in staging datasets and are 

normalized to analytics schemas with metadata columns 

such as event_timestamp, ingest_timestamp, 

source_system, and version. All tables include 

organization-wide pseudonymous patient_id keys, and 

direct identifiers are stored separately with restricted 

access. 

Governance & Privacy. Access is controlled via 

BigQuery IAM roles; column-level security masks 

sensitive fields; row-level policies restrict access for 

pediatric or sensitive cohorts; and audit logs capture query 

provenance. Training datasets are constructed with date 

bounds and point-in-time joins to prevent label leakage 

(no features generated using post-discharge information 

relative to the index). 

Feature Engineering in SQL 

Feature transformations are expressed in reusable SQL 

views: 

• Demographics: age at discharge, sex, insurance 

type. 

• Comorbidities: rolling 1-year counts and binary 

flags for Charlson/Elixhauser categories using 

ICD groupers. 
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• Utilization: number of ED visits, prior 

admissions, average length of stay, time since 

last discharge. 

• Laboratory trends: last value, slope over last N 

values, abnormal flags for key labs (e.g., 

creatinine, Hb, WBC). 

• Medication signals: counts of high-risk meds, 

polypharmacy indicators, adherence proxies. 

• Social determinants (if available): area-level 

deprivation indices. 

• Temporal sequences: encounter-level 

embeddings—ordered lists of diagnosis and 

procedure tokens in the preceding year, mapped 

to indices for sequence models. 

BigQuery window functions compute temporal 

aggregates; user-defined functions handle tokenization 

and bucketing; and materialized views cache high-cost 

features with scheduled refreshes. 

Data Export to TensorFlow 

Two strategies are used: 

1. Direct reading: TensorFlow’s I/O with the 

BigQuery Storage API streams training 

examples as tf.Example records (suitable for 

prototyping). 

2. TFRecords via Cloud Storage: Feature tables 

are exported to Parquet and converted to 

TFRecords with schema stored in a feature 

registry. Sharding by patient_id enables parallel 

training. Splits (train/validation/test) are 

stratified by hospital and calendar time to 

simulate deployment in new periods and to 

reduce overfitting to local practice patterns. 

Models 

We compare three families: 

• Logistic Regression (LR): L2-regularized, 

trained with TensorFlow; strong baseline with 

interpretable coefficients. 

• Gradient-Boosted Trees (GBT): tree 

ensembles (e.g., boosted decision trees 

implemented with TensorFlow Decision Forests) 

for nonlinear tabular interactions. 

• Sequence-Aware DNN (LSTM): 

o Inputs: (a) static/aggregate features; (b) 

tokenized temporal sequences of 

diagnoses/procedures; (c) optional 

short vitals time series from the index 

admission. 

o Architecture: embedding layers for 

codes → bi-directional LSTM (or 

GRU) → attention pooling → 

concatenation with static features → 

two dense layers with batch 

normalization and dropout → sigmoid 

output. 

o Regularization: dropout 0.3–0.5; 

weight decay; early stopping on 

validation AUPRC. 

o Class imbalance handling: focal loss or 

class weights based on inverse 

prevalence. 

Hyperparameters are tuned via randomized search 

(learning rate, hidden units, sequence length, batch size). 

All experiments fix seeds and record configurations for 

reproducibility. 

Training, Validation, and Serving 

• Validation: time-based split with the most 

recent quarter as hold-out; five-fold cross-

validation on preceding quarters. 

• Metrics: AUROC, AUPRC (for imbalanced 

outcomes), F1 at clinically meaningful 

thresholds, Brier score, Expected Calibration 

Error (ECE), and decision-curve net benefit. 

• Calibration: temperature scaling on validation; 

reliability diagrams verified on the test set. 

• Explainability: Integrated Gradients (for neural 

network inputs) and feature permutation 

importance; code embeddings are visualized to 

detect clinically coherent neighborhoods. 
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• Serving: models exported as SavedModel; 

inference hosted via TensorFlow Serving or 

Vertex AI Prediction; a lightweight BigQuery 

feature view supports online scoring with point-

in-time correctness. Predictions and features are 

logged back to BigQuery for monitoring (data 

drift, performance decay, fairness across 

subgroups). 

STATISTICAL ANALYSIS  

We simulate a cohort of 250,000 index discharges with a 

14% readmission rate. Missingness patterns are injected 

(e.g., labs missing not at random). The evaluation uses the 

final test window (last quarter). Confidence intervals are 

computed via 1,000 bootstrap resamples at the encounter 

level. AUROC differences are compared with DeLong’s 

test; AUPRC uncertainty uses bootstrap. Calibration is 

summarized by Brier score (lower is better) and ECE 

(binning-based). 

Table 1. Test-set performance for three model families. 

Model AURO

C (95% 

CI) 

AUPR

C 

(95% 

CI) 

F1 

@ 

0.3

0 

ris

k 

Brie

r 

Scor

e 

EC

E 

(%) 

Logistic 

Regressio

n (LR) 

0.744 

(0.739–

0.749) 

0.321 

(0.312–

0.331) 

0.4

1 

0.16

5 

4.8 

Gradient-

Boosted 

Trees 

(GBT) 

0.784 

(0.780–

0.789) 

0.366 

(0.357–

0.376) 

0.4

6 

0.15

3 

3.2 

LSTM 

(sequence

-aware 

DNN) 

0.812 

(0.808–

0.816) 

0.402 

(0.392–

0.411) 

0.5

0 

0.14

7 

2.6 

 

Fig.3 Test-set performance for three model families. 

Notes: (1) Threshold 0.30 chosen to approximate a 

referral capacity constraint for transitional care teams; (2) 

LSTM vs GBT AUROC p < 0.01 (DeLong); (3) All 

models calibrated post-hoc; (4) ECE computed with 10 

equal-frequency bins. 

SIMULATION RESEARCH AND RESULTS 

Simulation Design 

Because PHI cannot be disclosed and to avoid data-

sharing barriers, we constructed a synthetic yet clinically 

plausible dataset reflecting realistic utilization, 

comorbidity distributions, and temporal patterns. 

1. Population generator. 

o Draw patient ages from a truncated 

normal (μ=61, σ=14, range 18–95). 

o Assign comorbidities using a correlated 

Bernoulli process calibrated to produce 

multimorbidity (e.g., diabetes 

correlated with CKD and HF). 

o Insurance categories sampled by age 

and employment proxies. 

2. Encounter process. 

o For each patient, generate a Poisson 

number of encounters per year with 

over-dispersion (negative binomial) to 

reflect super-utilizers. 
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o For each index discharge, generate a 

time-to-event hazard for readmission 

based on a Cox-like proportional 

hazards structure with contributions 

from recent utilization, lab trends, and 

comorbidities. The binary label is 1 if 

the simulated event occurs within 30 

days. 

3. Events and measurements. 

o Labs and vitals are irregularly sampled 

with missing-not-at-random 

mechanisms: sicker patients have more 

labs drawn. 

o Diagnosis and procedure codes are 

sampled from learned frequency 

distributions with co-occurrence 

modeled by a latent topic mechanism to 

create realistic sequences. 

4. Data generation in BigQuery. 

o Synthetic tables are produced with 

GENERATE_DATE_ARRAY and 

RAND() seeded per patient, enabling 

reproducible partitions. 

o SQL UDFs implement hazard sampling 

and code co-occurrence; arrays of 

codes and time stamps are created 

directly in BigQuery. 

5. Scale and partitions. 

o 250k index discharges across 3 years; 

training on years 1–2.5, validation on 

the next quarter, testing on the last 

quarter. 

o Feature computation executed as 

materialized views; export to 

TFRecords for training. 

Computational Setup 

• BigQuery: standard edition, slot autoscaling 

enabled; query execution plans logged. 

• TensorFlow training: distributed training on 

two workers with GPU acceleration; mixed 

precision enabled. 

• Reproducibility: fixed seeds, containerized 

training environment; metrics and artifacts 

tracked for every run. 

Results of the Simulation 

Predictive performance. The LSTM model 

outperformed baseline LR and GBT across AUROC and 

AUPRC (Table 1), particularly benefiting from 

diagnosis/procedure sequences and recent utilization 

trajectories. Gains in F1 at the operational threshold 

indicate better precision without sacrificing recall, which 

is crucial for finite care-management capacity. 

Calibration and clinical utility. Post-hoc temperature 

scaling yielded low ECE for all models, with the LSTM 

demonstrating the best reliability. Decision-curve analysis 

(not tabulated) showed higher net benefit for the LSTM 

for thresholds between 0.2 and 0.5, the region aligned 

with referral criteria for transitional care teams. The Brier 

score improvements, though modest, suggest better 

probability estimates that could support shared decision-

making. 

Ablation studies. Removing temporal sequences reduced 

LSTM AUROC from 0.812 to 0.789, indicating that much 

of the lift comes from trajectory modeling rather than 

static aggregates. Excluding lab-trend features (keeping 

last-value only) reduced AUPRC by ~0.02 absolute, 

highlighting the importance of slope and instability 

indicators. 

Scalability and latency. End-to-end feature 

recomputation (all patients) completed within a few 

minutes on cached materialized views and under an hour 

on cold caches at the simulated scale, dominated by 

windowed lab/vital aggregations. Direct streaming via the 

BigQuery Storage API sustained high record throughput 

for online training; however, exporting to TFRecords 

yielded more stable training throughput, especially with 

larger batch sizes. 
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Robustness to missingness. Models trained with explicit 

missingness indicators and simple imputation (median for 

continuous, “unknown” token for categorical) performed 

better than models trained after listwise deletion. The 

LSTM architecture was resilient to irregular coding 

sequences because masking and attention pooling 

permitted variable-length inputs. 

Fairness and subgroup analysis. In the simulation, 

subgroup disparities were small by construction 

(synthetic data do not encode structural inequities unless 

imposed). In real deployments, subgroup metrics (AUC, 

calibration) must be computed by age band, sex, payer 

type, and hospital service lines to detect and mitigate 

disparities. 

Operational considerations. Because the prediction time 

is at discharge, feature freshness requirements are modest 

(hours rather than seconds). The pipeline is designed so 

that discharge events trigger feature materialization and 

batch scoring, with predictions appended to a 

readmission_risk_predictions table. Clinicians can review 

top contributing features via explanation tooling surfaced 

in dashboards. 

DISCUSSION 

The results illustrate that a BigQuery-centered data layer 

and TensorFlow modeling stack can deliver accurate, 

calibrated predictions at healthcare scale. Several design 

choices are pivotal: 

1. Point-in-time correctness. Historical feature 

backfills that respect event timestamps are non-

negotiable to prevent leakage. BigQuery 

window functions and array operations make it 

straightforward to define these rules 

declaratively. 

2. Minimal data movement. Performing 

aggregation and feature logic in SQL avoids 

duplicating pipelines across languages and 

reduces security surfaces. Exports are limited to 

the final feature tables for training and a compact 

online feature view for serving. 

3. Sequence modeling. Patient trajectories contain 

predictive signal beyond static comorbidity 

flags. Embedding code sequences with 

LSTM/attention improved discrimination and 

precision-recall, while still allowing 

interpretability via token attributions. 

4. Calibration and operational thresholds. Well-

calibrated probabilities matter more than rank 

ordering when resources are constrained. 

Systematic calibration and threshold tuning with 

clinicians ensures that model output maps to 

action. 

5. MLOps and governance. Comprehensive 

lineage—raw sources, SQL versions, model 

artifacts, evaluation reports—supports audits 

and rollbacks. Continuous evaluation detects 

drift, and shadow deployment reduces risk 

before full rollout. 

6. Privacy by design. Pseudonymization, 

column/row-level security, and audit logging are 

baseline controls. Differential privacy can be 

layered for the training phase when policy 

requires bounds on information leakage from 

rare patterns. 

CONCLUSION 

This manuscript presented a practical, reproducible 

pathway for building healthcare predictive analytics with 

BigQuery and TensorFlow, using 30-day readmission 

prediction as a guiding use case. The pipeline begins with 

governance-aware ingestion and curation, expressing 

feature logic as SQL in BigQuery to ensure point-in-time 

correctness and reduce data movement. Training 

leverages TensorFlow’s flexibility for both tabular and 

sequential inputs, with calibrated outputs and clinically 

aligned thresholds. In simulated studies mirroring 

realistic EHR dynamics, a sequence-aware deep model 

achieved superior discrimination and calibration relative 

to logistic regression and gradient-boosted trees, while the 
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BigQuery-centric design delivered favorable scalability 

and operational simplicity. 

The approach is production-ready in several respects—

lineage, monitoring, and explainability—but important 

limitations remain. Simulation cannot capture all nuances 

of coding practices, care pathways, or unobserved 

confounders that affect readmissions; real-world 

validation with prospective data is essential. Additionally, 

subgroup fairness must be examined on genuine patient 

cohorts, with bias mitigation plans co-designed with 

clinicians and compliance officers. Finally, clinical 

integration—alert design, workflow embedding, and 

feedback loops—determines realized value as much as 

AUROC. 

Future work should include: (1) prospective silent 

deployment to quantify drift and recalibration cadence; 

(2) evaluation of Transformer-based sequence encoders 

for longer histories and multimodal inputs (notes, 

images); (3) cost-effectiveness analysis linking risk 

thresholds to avoided readmissions and resource use; and 

(4) privacy-preserving training (federated learning or 

differentially private SGD) to enable cross-institutional 

collaboration without centralizing PHI. 

By combining declarative, scalable data engineering 

(BigQuery) with flexible, high-performance modeling 

(TensorFlow), healthcare organizations can move from 

proof-of-concept notebooks to robust, auditable 

prediction services that support safer, more equitable 

care—without sacrificing maintainability or governance. 
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