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ABSTRACT 

The rapid expansion of the Internet of Things (IoT) ecosystem has led to the generation of massive volumes of time-

series data across various sectors, including healthcare, manufacturing, smart cities, and critical infrastructure 

monitoring. Detecting anomalies within these time-series streams is vital for ensuring operational reliability, safety, 

and cyber-resilience. Anomalies may arise from hardware failures, cyber-attacks, system misconfigurations, or 

environmental factors, and their early detection can prevent catastrophic failures and financial losses. Traditional 

methods for anomaly detection, such as statistical techniques, rule-based systems, and classical machine learning 

models, often struggle to capture long-range dependencies and temporal correlations inherent in IoT data. 

Recently, deep learning models—especially Long Short-Term Memory (LSTM) networks and Autoencoders—have 

shown promise in addressing the limitations of classical techniques by learning complex patterns from data. However, 

they suffer from limitations such as vanishing gradients and computational inefficiencies when processing long 

sequences. Transformer architectures, originally designed for natural language processing tasks, offer a compelling 

alternative due to their ability to model long-term dependencies using self-attention mechanisms without relying on 

recurrence. 
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Fig.1 Anomaly Detection in Time-Series ,Source([1]) 

In this study, we propose and evaluate a Transformer-based framework for anomaly detection in time-series IoT data. 

Our methodology includes input embeddings, positional encoding, and a multi-head self-attention mechanism to learn 

complex temporal patterns. The model is benchmarked against LSTM and Autoencoder architectures using real-

world datasets—SWaT and SMD—featuring labeled anomalies in cyber-physical systems. Statistical analyses, 

including precision, recall, F1-score, AUC, and RMSE, demonstrate that the Transformer model consistently 

outperforms traditional models in detection accuracy and robustness. 

Simulation research further validates the model’s capability to detect diverse types of anomalies, including sudden 

spikes, gradual drifts, and sensor failures. This research establishes the Transformer architecture as a state-of-the-

art solution for real-time anomaly detection in dynamic and data-rich IoT environments. 
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INTRODUCTION 

The proliferation of IoT devices has led to an explosion in the volume and complexity of data streams collected over time. 

These time-series data are critical for real-time monitoring, predictive maintenance, and decision-making across multiple 

sectors. However, the presence of anomalies—such as sudden spikes, drops, or patterns deviating from normal behavior—

can disrupt system operations and lead to serious consequences in applications like healthcare monitoring, smart grids, and 

industrial control systems. 

Traditional methods such as statistical modeling, rule-based engines, and classical machine learning approaches have shown 

limited success due to their inability to adapt to evolving patterns and non-linear dynamics in IoT data. Recurrent neural 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2079-9292%2F11%2F23%2F3955&psig=AOvVaw20edpe_lzgdXTjFsaDJRQq&ust=1754162824513000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNDlhYGt6o4DFQAAAAAdAAAAABAE
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networks (RNNs) and LSTMs brought advancements by capturing temporal dependencies, but they suffer from vanishing 

gradients and computational inefficiency with long sequences. 

 

Fig.2 Transformer Architectures,Source([2]) 

The Internet of Things (IoT) revolution is transforming industries by enabling real-time monitoring, data-driven decision-

making, and automated control across diverse domains such as healthcare, smart cities, industrial automation, and energy 

systems. IoT devices generate continuous streams of multivariate time-series data from various sensors and actuators. 

Ensuring the integrity and reliability of these data streams is crucial, as undetected anomalies can lead to operational failures, 

security breaches, or compromised safety. 

Anomaly detection—the task of identifying patterns in data that do not conform to expected behavior—has thus become a 

critical research area in the context of IoT systems. These anomalies may result from malfunctioning sensors, cyber 

intrusions, data transmission errors, or unexpected environmental events. Accurately detecting such anomalies is a complex 

task due to the high volume, velocity, and variability of IoT time-series data. 

Conventional approaches, such as rule-based systems and statistical models like ARIMA or PCA, have been widely used in 

the past. However, these techniques often fall short when dealing with non-linear, high-dimensional, and evolving data 

patterns. In response to these challenges, machine learning and deep learning models have gained popularity. Recurrent 

architectures, particularly Long Short-Term Memory (LSTM) networks, are capable of modeling temporal dependencies, 

while Autoencoders attempt to reconstruct normal patterns and flag deviations as anomalies. 

Despite these advances, both LSTM and Autoencoder models face limitations when processing long sequences or capturing 

global dependencies. Transformers, which use self-attention mechanisms, offer a solution by enabling efficient parallel 

computation and superior modeling of long-term dependencies. While Transformers have proven successful in natural 

language processing, their application to time-series anomaly detection in IoT remains relatively underexplored. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2079-9292%2F12%2F2%2F354&psig=AOvVaw20edpe_lzgdXTjFsaDJRQq&ust=1754162824513000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNDlhYGt6o4DFQAAAAAdAAAAABAK
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This study aims to fill this gap by proposing a Transformer-based architecture tailored for time-series anomaly detection. By 

benchmarking against LSTM and Autoencoder baselines, and validating performance using real-world datasets and 

simulation scenarios, we aim to establish a new benchmark for reliable, scalable, and interpretable anomaly detection in IoT 

ecosystems. 

LITERATURE REVIEW 

Anomaly detection in time-series data has been extensively studied, with traditional statistical methods like ARIMA, PCA, 

and k-means clustering providing early foundations. Chandola et al. (2009) provided a comprehensive survey of anomaly 

detection techniques. However, these methods often fall short in handling the complexity and high-dimensionality of IoT 

data. 

Machine learning methods such as Isolation Forest (Liu et al., 2008) and One-Class SVMs (Schölkopf et al., 2001) improved 

generalizability but lacked contextual sequence awareness. With the rise of deep learning, LSTM-based approaches gained 

traction. Malhotra et al. (2015) used LSTM encoder-decoder frameworks to capture sequential patterns for anomaly detection 

in temporal data. 

Autoencoders also emerged as popular tools for unsupervised anomaly detection, reconstructing input signals and identifying 

deviations. However, both LSTM and Autoencoder methods are limited in capturing global dependencies due to sequential 

computation constraints. 

Transformers, due to their self-attention mechanism, can model relationships across long sequences without the need for 

recurrence. Lim et al. (2021) proposed the "Informer" model, showcasing improved efficiency in long-term forecasting. 

Zhang et al. (2022) used Transformer-based frameworks for multivariate anomaly detection with superior performance. 

Despite these advancements, limited research has benchmarked Transformers on real-world IoT datasets with comparative 

statistical rigor. This study addresses that gap by applying and evaluating Transformer models on standard IoT datasets. 

METHODOLOGY 

Problem Formulation 

Given a multivariate time-series X={x1,x2,...,xT}X = \{x_1, x_2, ..., x_T\} collected from IoT sensors, where each xt∈Rnx_t 

\in \mathbb{R}^n, the objective is to learn a function f(X)→Yf(X) \rightarrow Y, where Y={y1,y2,...,yT}Y = \{y_1, y_2, ..., 

y_T\} with yt∈{0,1}y_t \in \{0,1\}, indicating normal (0) or anomalous (1) instances. 

Dataset Description 

Two publicly available datasets were used: 
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• SWaT (Secure Water Treatment Plant): Time-series data from a water purification system with labeled attack 

events. 

• SMD (Server Machine Dataset): Multivariate time-series from server machines with labeled anomalies due to 

faults and cyber-attacks. 

Data Preprocessing 

• Normalization (Z-score) applied to each feature. 

• Sliding window approach (window size = 100) used for segmentation. 

• 70% of the data used for training, 15% for validation, and 15% for testing. 

Model Architecture 

• Input Embedding: Linear projection of time-series windows into feature vectors. 

• Positional Encoding: Added to retain temporal order. 

• Encoder Stack: Multiple layers of multi-head self-attention and feed-forward networks. 

• Output Layer: Sigmoid activation function for binary classification. 

Hyperparameters: 

• Embedding size: 64 

• Number of layers: 4 

• Attention heads: 8 

• Learning rate: 0.0005 

• Batch size: 32 

Baselines for Comparison 

• LSTM with 2 hidden layers and dropout 

• Autoencoder with symmetrical encoder-decoder architecture 

Evaluation Metrics 

• Precision 

• Recall 

• F1-score 

• Area Under ROC Curve (AUC) 

• Root Mean Squared Error (RMSE) for reconstruction models 

STATISTICAL ANALYSIS 
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The performance metrics for the three models across both datasets are presented below. 

Table 1: Comparative Performance Metrics 

Model Dataset Precision Recall F1-score AUC RMSE 

LSTM SWaT 0.84 0.77 0.80 0.89 0.145 

Autoencoder SWaT 0.81 0.74 0.77 0.85 0.158 

Transformer SWaT 0.91 0.87 0.89 0.95 0.102 

LSTM SMD 0.79 0.75 0.77 0.88 0.162 

Autoencoder SMD 0.76 0.70 0.73 0.83 0.171 

Transformer SMD 0.89 0.85 0.87 0.94 0.118 

 

Fig.3 : Comparative Performance Metrics 

Statistical significance was verified using ANOVA with p-value < 0.01, confirming that the Transformer model outperforms 

baselines across all metrics. 

SIMULATION RESEARCH 

We designed simulation experiments to assess the robustness of the Transformer under various anomaly scenarios: 

• Scenario 1: Gradual drift – slowly increasing sensor values. 

• Scenario 2: Sudden spike – abrupt change in signal value. 

• Scenario 3: Sensor failure – zero or missing values for a period. 

Results showed that: 

• In Scenario 1, Transformer had an early detection rate of 92%, outperforming LSTM (78%) and Autoencoder (65%). 
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• In Scenario 2, Transformer reduced false positives significantly due to its contextual understanding of global 

sequence. 

• In Scenario 3, Transformer adapted well using positional encodings and captured the anomalous flatline pattern 

more effectively. 

The simulations used synthetic data generated using Gaussian noise injection and adversarial pattern synthesis to mimic real-

world irregularities. Visual plots from the simulations demonstrated that the Transformer’s attention weights focused on both 

short-term and long-term cues effectively. 

RESULTS 

Key findings from our experiments are as follows: 

• Transformer models achieved the highest F1-score and AUC in both datasets. 

• The self-attention mechanism allowed the model to identify both local and global anomalies effectively. 

• Transformer models were computationally more efficient in training time due to parallelization. 

• Error reconstruction in Transformer was significantly lower, indicating better representation learning. 

Visualization using t-SNE clustering showed that anomalous sequences formed distinct clusters in the Transformer’s latent 

space, validating its superior feature encoding capability. 

In cross-dataset transfer tests, the Transformer retained a robust detection accuracy of over 85%, while LSTM dropped below 

75%, suggesting better generalization. 

CONCLUSION 

This study presents a comprehensive analysis of Transformer-based architectures for anomaly detection in time-series IoT 

data. By leveraging self-attention mechanisms, Transformer models excel in capturing complex temporal dependencies and 

detecting subtle as well as pronounced anomalies. Our experiments on benchmark datasets and simulation scenarios 

demonstrate that Transformers significantly outperform traditional LSTM and Autoencoder models across various 

performance metrics. 

The statistical analysis confirms the robustness and effectiveness of the approach, while simulation research highlights its 

adaptability to real-world anomaly types such as sensor drift, spikes, and failures. As IoT systems continue to expand, 

ensuring their reliability through accurate anomaly detection becomes imperative. 

Our findings underscore the importance of incorporating Transformer architectures in IoT data pipelines for intelligent 

monitoring and diagnostics. Future work may explore hybrid models combining Transformers with graph neural networks 

or integrating causal inference for enhanced interpretability. 
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