
 

16 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 
 

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE) 
ISSN (Online): request pending 
Volume-1 Issue-1 || Jan-Mar 2025 || PP. 16-21 
 

Comparative Study of Federated Learning Techniques 

for Healthcare Applications 
DOI: https://doi.org/10.63345/ijarcse.v1.i1.103 

Dr. Gaurav Raj 

SSET,  Sharda University 

Greater Noida , India 

er.gaurav.raj@gmail.com 

 
www.ijarcse.org  || Vol. 1 No. 1 (2025): January Issue 

 

Date of Submission: 28-12-2024 Date of Acceptance: 30-12-2024 Date of Publication: 03-01-2025 

ABSTRACT 
The exponential growth of healthcare data and the concurrent need for privacy-preserving machine learning models 

have propelled Federated Learning (FL) into the forefront of healthcare artificial intelligence research. FL enables 

multiple medical institutions to collaboratively train AI models without centralizing sensitive patient data. This 

manuscript presents a comparative study of popular federated learning techniques, including FedAvg, FedProx, 

FedSGD, and Scaffold, evaluating their effectiveness in healthcare scenarios such as disease diagnosis, patient 

monitoring, and medical image classification.  
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Fig.1 Federated Learning Techniques,Source([1]) 

Using publicly available datasets including MIMIC-III and COVIDx, we simulate multi-institution federated settings 

and perform detailed statistical analysis on metrics such as accuracy, convergence time, communication cost, and 

privacy leakage risk. The results show that while FedAvg is communication-efficient and robust, Scaffold offers 

superior convergence in heterogeneous data environments. FedProx is particularly useful under non-IID conditions 

prevalent in clinical data. This study highlights the trade-offs between algorithmic complexity, performance, and 

privacy guarantees, concluding with suggestions for FL technique selection based on specific healthcare use cases. 
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INTRODUCTION 
With the digitization of healthcare systems, vast amounts of data are being generated from hospitals, wearable devices, 

electronic health records (EHRs), and imaging modalities. While this data holds immense potential for training intelligent 

predictive models, privacy regulations such as HIPAA and GDPR restrict data sharing across institutions. Federated Learning 

(FL) presents a paradigm shift, allowing decentralized data utilization by training models across multiple nodes without 

exposing raw data. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2666379124000429&psig=AOvVaw0rZ1RtfZgoh_uq_hAj2aTe&ust=1754500504179000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKig2OyV9I4DFQAAAAAdAAAAABAE
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Fig.2 Federated Learning Techniques for Healthcare Applications,Source([2]) 

Healthcare applications of FL include predictive diagnostics, clinical decision support, remote patient monitoring, and 

personalized treatment planning. However, FL faces significant challenges in this domain, such as statistical heterogeneity, 

communication inefficiency, and vulnerability to adversarial attacks. This study compares major FL techniques and their 

adaptability in real-world healthcare applications through simulation and statistical analysis. 

LITERATURE REVIEW 
The concept of federated learning was first formalized by McMahan et al. (2017) with the introduction of FedAvg, which 

averages model weights across distributed clients. Since then, several variants have been proposed to address issues of client 

data imbalance and system heterogeneity. 

• FedAvg is effective in IID (independent and identically distributed) settings but suffers in non-IID cases, common 

in healthcare. 

• FedSGD performs synchronous gradient updates but can lead to higher communication costs. 

• FedProx (Li et al., 2020) introduces a proximal term to improve robustness in heterogeneous data. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10586-022-03658-4&psig=AOvVaw0rZ1RtfZgoh_uq_hAj2aTe&ust=1754500504179000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKig2OyV9I4DFQAAAAAdAAAAABAK
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• Scaffold (Karimireddy et al., 2020) employs control variates to counter client drift and improve convergence. 

Studies such as Sheller et al. (2019) explored FL in brain tumor segmentation, while Rieke et al. (2020) applied it to COVID-

19 diagnostics. Privacy-preserving approaches like differential privacy (DP) and secure multiparty computation (SMC) are 

often incorporated to further strengthen FL protocols. 

Despite these advancements, a comparative analysis focused on real healthcare applications under simulation remains 

limited. This manuscript fills that gap. 

METHODOLOGY 
3.1 Federated Learning Techniques 

We implement and evaluate the following FL algorithms: 

• FedAvg: Periodic averaging of local model weights. 

• FedSGD: Synchronizes gradient updates rather than weights. 

• FedProx: Adds a proximal term to the objective function. 

• Scaffold: Uses server-side and client-side control variates. 

3.2 Datasets 

Two open-source healthcare datasets were selected: 

1. MIMIC-III: Contains de-identified health records of 60,000+ ICU patients. 

2. COVIDx: Chest X-ray dataset for COVID-19 diagnosis. 

These datasets are partitioned into 5 simulated hospitals (clients) under both IID and non-IID conditions. 

3.3 Experimental Setup 

• Hardware: Simulated with PySyft and PyTorch on a 16-core CPU, 64GB RAM. 

• Model: CNN for image classification (COVIDx), LSTM for time-series EHR data (MIMIC-III). 

• Evaluation Metrics: Accuracy, convergence time (epochs), communication rounds, and privacy leakage score using 

a membership inference attack. 

3.4 Simulation Design 

Each FL method is run for 100 global rounds. Data is distributed among clients with varying levels of skew to simulate real-

world non-IID conditions. 

STATISTICAL ANALYSIS 
Metric FedAvg 

(M±SD) 

FedProx 

(M±SD) 

Scaffold 

(M±SD) 

FedSGD 

(M±SD) 

p-

value 

Accuracy (%) 86.2 ± 2.3 87.8 ± 1.7 89.4 ± 1.5 83.5 ± 2.9 <.001 

Convergence Time 

(epochs) 

57 ± 6 60 ± 4 45 ± 5 70 ± 7 <.01 

Communication Rounds 100 100 80 100 N/A 

Privacy Leakage Score 0.18 ± 0.05 0.12 ± 0.03 0.11 ± 0.02 0.20 ± 0.06 <.01 
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Fig.3 Statistical Analysis 

Interpretation: Scaffold outperforms others in accuracy and convergence, with minimal privacy risk. FedProx handles non-

IID better than FedAvg. FedSGD is less efficient in resource-constrained healthcare setups. 

SIMULATION RESEARCH 
5.1 Objective 

To evaluate FL techniques under realistic hospital network conditions and data irregularities. 

5.2 Simulation Parameters 

• Clients: 5 simulated hospitals. 

• Data Split: 70:30 train-test split, non-IID by hospital specialty. 

• Communication Delays: Simulated latency (10–500ms). 

• Adversary Model: Passive attacker using inference attack. 

5.3 Results 

• FedAvg: Stable performance, 86% accuracy on average. Suffers under extreme non-IID settings. 

• FedProx: Showed resilience to data skew with minimal performance degradation. 

• Scaffold: Fastest convergence and highest accuracy (89%) in both datasets. 

• FedSGD: More communication rounds required; unsuitable for low-bandwidth hospital settings. 

Scaffold required fewer iterations to reach 85% accuracy in both datasets, followed by FedProx. All algorithms withstood 

passive attacks when integrated with differential privacy, but FedProx and Scaffold showed better robustness. 

RESULTS 
• Model Performance: Scaffold had the best overall performance in accuracy and convergence. FedAvg was efficient 

but sensitive to data heterogeneity. 

• System Efficiency: FedAvg and Scaffold demonstrated lower communication costs than FedSGD. 

• Privacy Considerations: FedProx and Scaffold had lower susceptibility to inference attacks. 

• Usability in Healthcare: Scaffold is ideal for real-time diagnostics, while FedProx suits decentralized patient 

monitoring systems. FedAvg is a strong baseline for homogenous hospital networks. 

100 100
80

100

0

0 0

0

0

00

20

40

60

80

100

120

FedAvg (M±SD) FedProx (M±SD) Scaffold (M±SD) FedSGD (M±SD) p-value

Metric

Communication Rounds Privacy Leakage Score



 

21 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 
 

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE) 
ISSN (Online): request pending 
Volume-1 Issue-1 || Jan-Mar 2025 || PP. 16-21 
 

CONCLUSION 
This study presents a comprehensive comparative analysis of federated learning algorithms applied to healthcare data. 

Through statistical evaluation and simulation experiments on COVID-19 imaging and ICU records, we find that: 

• Scaffold is the most balanced in accuracy, speed, and robustness, making it ideal for heterogeneous data. 

• FedProx is tailored for environments where patient data distributions vary across institutions. 

• FedAvg serves as a simple and effective method when client data is fairly homogeneous. 

• FedSGD is less optimal due to communication inefficiency. 

The study emphasizes that algorithm choice should depend on specific healthcare deployment conditions. For environments 

with severe privacy constraints and non-IID data, Scaffold and FedProx outperform. Further research may focus on 

integrating homomorphic encryption and adaptive client selection to enhance FL's practicality in clinical environments. 
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