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ABSTRACT

Crowd behavior analysis in surveillance video streams has emerged as a cornerstone of modern public safety and
security systems, underpinning applications from urban traffic management to large-scale event monitoring.
Traditional manual surveillance methods, which rely on human operators to visually inspect live or recorded footage,
are labor-intensive, prone to fatigue-induced errors, and lack the responsiveness required for timely intervention. In
response to these limitations, this study introduces an end-to-end Al-driven framework that synergistically combines
spatial feature extraction, temporal sequence modeling, and probabilistic inference for robust, real-time crowd
behavior interpretation. At its core, the framework employs a lightweight convolutional neural network (CNN)
backbone—optimized for multi-scale person detection and region-level embedding—coupled with a bidirectional

Long Short-Term Memory (BiLSTM) network to capture dynamic temporal dependencies.
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Fig.1 Crowd Behavior Analysis,Source([1])
A Hidden Markov Model (HMM) layer interprets the sequence outputs to detect anomalous transitions in crowd
states. We validate this architecture through a two-pronged evaluation: (1) controlled simulation research using
Unity3D-generated synthetic crowds under varying densities and motion patterns, and (2) real-world testing on
publicly available CCTYV datasets encompassing campus and marathon footage. Comprehensive statistical analyses—
comparing our CNN+BiLSTM+HMM pipeline against density-only CNN and LSTM-autoencoder baselines—
demonstrate that our method attains 92.3% classification accuracy, boosts precision and recall beyond 90%, and
reduces false alarm rates by over 40%. Furthermore, the system consistently processes multi-camera streams at real-
time speeds (=20 fps) on standard GPU hardware. These findings underscore the framework’s potential to transform
reactive monitoring into proactive crowd management, enabling timely alerts for emergent behaviors such as
congestion buildup, sudden dispersal, and aggressive clustering. Future extensions will explore self-supervised pre-
training to mitigate labeled-data scarcity and multi-view fusion for enhanced spatial awareness.
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INTRODUCTION
Ensuring the safety and orderly flow of people in densely populated contexts—such as stadiums, transportation hubs, and
public squares—poses significant challenges. Historically, closed-circuit television (CCTV) systems have served as the
primary tool for continuous surveillance, yet they remain heavily reliant on trained human operators to detect and respond
to incidents. Research indicates that human attention degrades after 20-30 minutes of continuous monitoring, leading to
missed events and delayed interventions. Moreover, the subjective nature of visual inspection can result in inconsistent threat

assessments across operators.
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The rapid proliferation of affordable cameras and edge-computing devices has created an unprecedented opportunity to apply
artificial intelligence (AI) at scale, automating the detection and interpretation of crowd behavior with minimal human
oversight. Automatically identifying critical events—such as congestion hotspots, stampede precursors, and anomalous
gatherings—can accelerate emergency responses, guide crowd control measures, and optimize resource allocation. However,
several technical hurdles must be overcome:
1. Occlusion and Density: High-density crowds often result in severe occlusions, complicating individual detection
and tracking.
2. Variable Lighting and Weather: Outdoor deployments must contend with changing illumination, shadows, and
weather conditions that degrade visual quality.
3. Behavioral Complexity: Crowd dynamics can exhibit subtle precursors to critical incidents—minor clustering or
speed variations—that require fine-grained temporal modeling.
4. Real-Time Constraints: Practical deployments demand low-latency processing to issue timely alerts, necessitating
efficient model architectures.

Crowd Levels Definition

Abnormal Behaviors Definition Abnormal Behaviors Definition

(seCﬁon 2) 4 Mnormal Behaviors Classification

Object Occlusion

Main Challenges ) o
(Seeﬁon 3) Motion Blur and Pose Diversity

Statistical Model

Motion Feature

Traditional Methods
Dynamic Model
Cl‘OWd Abnormal Clustering Discrimination
Behavior Recognition Recognition Technology Convolutional Neural Network

(Section 4)

Based on Computer
Vision

Autoencoder

Deep Learning Generative Adversarial Network

Long Short-Term Memory Network

Self-Attention Mechanism

Experimental Datasets

Experimental Evaluation Indicators

Experimental Comparative Analysis

Conclusions
(Section6)

Fig.2 Abnormal crowd Behaviour recognition,Source(/2])
This manuscript presents a holistic solution addressing these challenges. We propose a three-stage pipeline: spatial feature
learning via an optimized YOLOv4-Tiny CNN, temporal sequence modeling with a bidirectional LSTM, and anomaly

inference through an HMM. By integrating these components into a unified framework, we achieve robust detection of
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defined behavior states—normal flow, mild congestion, sudden halt, and dispersal—while maintaining real-time
performance. Through extensive simulation and real-world validation, we quantify the system’s accuracy, latency, and
scalability, demonstrating its readiness for deployment in live surveillance networks.

LITERATURE REVIEW

The domain of automated crowd analysis spans decades of research across computer vision, machine learning, and human
behavior modeling. We categorize prior work into three principal areas: density estimation, motion and flow modeling, and
anomaly detection.

2.1 Density Estimation

Early density estimation approaches relied on pixel-level operations—background subtraction to isolate moving objects and
blob counting to estimate head or torso counts. While simple, these methods degrade rapidly under occlusion and require
manual threshold tuning. The advent of convolutional neural networks (CNNs) enabled density map regression, where a
network outputs a continuous density field indicating the expected number of people per pixel region. CSRNet and MCNN
architectures achieved substantial gains by using dilated convolutions to enlarge receptive fields without downsampling.
However, their heavy computational footprints limit real-time deployment.

2.2 Motion and Flow Modeling

Optical flow techniques, originating with the Lucas-Kanade and Horn-Schunck algorithms, quantify pixel displacements
between consecutive frames, offering a dense motion field. Researchers have applied flow histograms and vector clustering
to interpret collective movement patterns. More recent works, such as Social Force Models, simulate inter-agent repulsion
and attraction forces to predict pedestrian trajectories. Nonetheless, purely physics-based models struggle to generalize across
diverse crowd behaviors, motivating hybrid data-driven approaches.

2.3 Anomaly Detection

Statistical anomaly detection leverages models of “normalcy” derived from historical video. Early methods applied Gaussian
Mixture Models (GMMs) to flow vectors, flagging deviations beyond learned thresholds. Deep learning introduced
autoencoders that learn compact representations of normal frames, with high reconstruction error indicating anomalies.
GAN-based methods pit a generator against a discriminator to detect irregular frames. Despite impressive results, these
techniques often yield high false positives when the training set lacks diverse normal examples.

2.4 Hybrid Architectures

To capture both spatial detail and temporal context, hybrid CNN-RNN pipelines have gained traction. Ibrahim et al. (2016)
integrated a CNN encoder with an LSTM decoder, detecting anomalies in crowd motion sequences. Liang et al. (2019)
extended this by constructing scene graphs linking individual trajectories to group behaviors. However, the computational
complexity and latency of these models remain barriers to real-time application.

Our approach builds on this body of work by selecting an efficient CNN backbone (YOLOv4-Tiny) for rapid spatial
encoding, pairing it with a BILSTM for bidirectional temporal context, and incorporating an HMM layer to formalize
behavior transitions. This design balances the need for expressive modeling with the imperative for real-time inference.

METHODOLOGY

This section details the architecture, data preparation, and training procedures used in our framework.

3.1 Data Preprocessing
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Frame Sampling: Input video streams are sampled at 20 fps. Frame rate was chosen to balance temporal resolution
with computational load.

Normalization and Resizing: Frames resized to 416x416 pixels; pixel intensities normalized to the [0, 1] range.
Background Subtraction: A running Gaussian mixture model flags static background regions, enabling the CNN
to focus on active areas containing crowd motion.

Data Augmentation: To enhance robustness to illumination and viewpoint variation, we apply random flips,

brightness shifts (£20%), and affine transformations during training.

3.2 Spatial Feature Extraction

Backbone Network: We adopt YOLOv4-Tiny—featuring CSPDarknet53-Tiny—due to its favorable accuracy-
throughput trade-off. The network outputs three detection heads corresponding to small, medium, and large
pedestrian scales.

Region-level Embedding: For each detection, we extract the feature map region and pass it through a 512-unit

dense layer, producing a fixed-length embedding representing local appearance and context.

3.3 Temporal Sequence Modeling

Sequence Buffer: We buffer embeddings across a sliding window of 30 frames (~1.5 s). Overlapping windows
(stride = 10 frames) ensure continuity and reduce latency.

BiLLSTM Architecture: A two-layer bidirectional LSTM (256 units per direction) processes each sequence,
capturing forward and backward temporal dependencies.

Regularization: Dropout (0.4) applied between LSTM layers to prevent overfitting, along with L2 weight decay
(1e-4).

3.4 Anomaly Inference

Hidden Markov Model (HMM): We fit an HMM on the BiLSTM output distributions for four behavior states
(normal, congestion, halt, dispersal). Transition probabilities encode expected temporal progressions (e.g.,
normal—congestion, congestion—halt).

Anomaly Scoring: For each window, we compute the negative log-likelihood of the observed state sequence under

the HMM. Scores above a threshold (tuned on validation set at 0.65) trigger an alert.

3.5 Training and Implementation

Loss Functions: We jointly optimize the YOLO detection loss (bounding box + classification + objectness) and a
cross-entropy loss for sequence-level behavior classification.

Optimization: Stochastic gradient descent with a cosine annealing learning-rate schedule, initial LR = 1e-3, batch
size = 16 sequences.

Deployment: Implemented in PyTorch with TorchScript export for C++ inference. On an NVIDIA RTX 2080,

single-stream latency averages 40 ms/frame.

STATISTICAL ANALYSIS

We conducted quantitative comparisons on five synthetic scenarios covering densities from 0.5 to 3.0 persons/m? and motion

types: steady flow, stop-and-go, and dispersal. Each scenario comprises 1,000 annotated frames. Models evaluated:

1.
2.

Density-Only CNN (CSRNet variant): density map regression + heuristic thresholding
LSTM-Autoencoder: CNN encoder + LSTM decoder reconstruction error
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3. Proposed CNN+BiLSTM+HMM

Performance metrics (mean + SD over five runs):

Model Accuracy Precision Recall F1-Score False Alarm Rate
(%) (%) (%) (%) (%)
Density-Only CNN 782+2.4 754 +£3.1 80.1+2.7 77.7+29 18.5+£2.0
LSTM-Autoencoder 85.6+1.8 83.2+2.0 87.4+15 853+1.7 123+14
Proposed 92.3+1.2 90.8 £1.5 93.7£1.0 | 922+1.2 6.9+1.0
CNN+BiLSTM+HMM

Table 1. Performance comparison across models in simulated scenarios.
An ANOVA test confirms that differences across models are statistically significant for all metrics (p < 0.001). Post-hoc
Tukey tests reveal our method significantly outperforms both baselines (p < 0.01), with the most pronounced gains in
reducing false alarms.
SIMULATION RESEARCH
To emulate real-world surveillance challenges, we built a synthetic environment in Unity3D:
1. Scene Configuration: A 20 x 20 m plaza with four dynamic entry/exit zones and variable obstacle placement.
2. Agent Dynamics: 500 agents governed by a Social Force Model, programmed to execute normal flow, evacuation
drills, and random dispersal patterns.
3. Camera Network: Four 1080p virtual cameras positioned to provide 90% scene coverage, streaming at 25 fps.
We evaluated throughput and latency under single-GPU and multi-GPU settings:
o Single GPU (RTX 2080): Processes one stream at 25 fps; end-to-end latency 120 ms/frame.
e  Quad-Stream (%x4): Sustains 18 fps per stream; latency 160 ms/frame.
e Scale-Out: On a four-GPU cluster, achieves >20 fps for 16 concurrent streams, confirming the framework’s
scalability.
Qualitative analysis of flagged anomalies shows precise localization of congestion pockets and timely alerts for abrupt
dispersal episodes, with an average detection lead time of 1.2 s before manual annotation.
RESULTS
We validated on two real-world datasets:
1. University Campus CCTYV (10 h footage, annotated for congestion): 90.1% accuracy, 88.7% precision, 91.5%
recall. False alarm rate: 7.8%.
2. Public Marathon Coverage (3 h high-density segments): During peak density (>1.5 persons/m?), the system
identified crowd surges with 93.4% F1-score. Alerts aligned within £2 s of ground-truth events.
Robustness tests under varying illumination (day/night cycles) and occlusion scenarios (>60% overlap) indicate stable
performance (<5% degradation). Operator feedback in a live pilot rated the system’s alerts as actionable and reduced manual
monitoring load by 70%.
CONCLUSION
This work presents a scalable, Al-driven framework for automated crowd behavior analysis in surveillance video streams.
The integration of a YOLOv4-Tiny CNN backbone, BILSTM temporal modeling, and HMM-based anomaly inference yields

high accuracy (92.3%), low false alarm rates (6.9%), and real-time processing (=20 fps on multi-GPU clusters). Extensive
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simulation and real-world evaluations confirm the system’s efficacy in diverse settings—from controlled synthetic plazas to
crowded marathon routes.
Key contributions include:

e  Aunified pipeline balancing expressive power with computational efficiency.

e A probabilistic HMM layer that formalizes behavior transitions, reducing spurious alerts.

e Demonstrated scalability to multi-camera deployments.
Future enhancements will explore self-supervised pre-training to address labeled-data scarcity, multi-view depth fusion for
3D crowd reconstruction, and integration with edge-Al devices for on-site inference. By transforming reactive surveillance

into proactive crowd management, this framework paves the way for smarter cities and safer public spaces.
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