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ABSTRACT 
The rise of edge computing and the proliferation of Internet-of-Things (IoT) devices have highlighted the urgent need 

for deploying efficient and lightweight deep learning (DL) models on resource-constrained embedded systems. While 

conventional deep learning architectures have demonstrated outstanding performance in various domains, their high 

computational and memory requirements hinder their application in low-power embedded environments. This study 

evaluates and benchmarks lightweight DL models—namely MobileNetV2, SqueezeNet, ShuffleNet, and Tiny-

YOLO—on popular embedded platforms including Raspberry Pi 4, NVIDIA Jetson Nano, and Google Coral Dev 

Board. 

The need for deploying deep learning inference at the edge is driven by latency-sensitive applications such as real-

time surveillance, health monitoring, and autonomous navigation, where reliance on cloud connectivity may be 

unreliable or impractical. Therefore, this manuscript adopts a comprehensive evaluation framework that not only 

measures performance metrics such as inference time, accuracy, power consumption, and memory usage, but also 

simulates real-world use cases to test deployment feasibility. 

A combination of statistical analysis and simulation research is applied to ensure robust and generalizable results 

across platforms and tasks. Notably, ANOVA tests reveal statistically significant differences between models on 

inference time and efficiency, supporting hardware-specific model recommendations. The findings suggest that 

MobileNetV2 achieves a favorable balance between model accuracy and latency, while SqueezeNet offers optimal 

memory and power usage for severely constrained devices. Tiny-YOLO, although heavier, remains valuable in object 

detection tasks on GPU-supported systems. 

This paper contributes a practical guide for researchers and developers seeking to implement edge AI systems in real-

world conditions. It also underscores the importance of platform-aware model selection to maximize efficiency and 
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maintain task-specific accuracy, ultimately advancing the integration of intelligent capabilities into embedded 

systems. 

KEYWORDS 
Lightweight deep learning, embedded systems, MobileNet, SqueezeNet, inference latency, edge AI, resource-

constrained devices, performance benchmarking 

 
Fig.1 Performance Evaluation of Lightweight,Source([1]) 

INTRODUCTION 
Deep learning has revolutionized fields such as computer vision, speech recognition, and natural language processing. 

However, the deployment of these powerful models typically requires high computational power and memory resources, 

often fulfilled by GPUs or TPUs in cloud environments. With the growing emphasis on privacy, latency reduction, and 

bandwidth conservation, there has been a paradigm shift toward on-device or edge AI computation using embedded systems. 

Deep learning (DL) has emerged as the dominant paradigm in artificial intelligence (AI), leading to breakthroughs in 

numerous fields including computer vision, speech recognition, natural language processing, and autonomous systems. 

Traditionally, these deep neural networks are computationally intensive and have relied on powerful GPUs or distributed 

cloud infrastructures for training and inference. However, with the advent of edge computing and the increasing demand for 

intelligent applications in portable or remote environments, there is a growing need to run DL models directly on embedded 

systems. 

Embedded systems, such as Raspberry Pi, NVIDIA Jetson Nano, and Google Coral Dev Board, offer an affordable, compact, 

and energy-efficient computing solution. They are increasingly used in smart homes, wearable devices, robotics, medical 

https://www.google.com/url?sa=i&url=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10462-024-10877-1&psig=AOvVaw10EDq5lnaZmoYpFFVx9saP&ust=1754162168144000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKCzlLmp6o4DFQAAAAAdAAAAABAE
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diagnostics, and surveillance systems. Despite their potential, these platforms pose challenges in terms of limited 

computational capacity, memory bandwidth, storage, and power availability, making the direct deployment of traditional DL 

models infeasible. To bridge this gap, lightweight DL models have been developed to ensure acceptable performance without 

overburdening the embedded hardware. 

 
Fig.2 Performance Evaluation,Source([2]) 

Lightweight models like MobileNetV2, SqueezeNet, ShuffleNet, and Tiny-YOLO are specifically engineered to minimize 

parameters, reduce latency, and consume less power, while still achieving competitive accuracy on benchmark datasets. 

These models utilize architectural innovations such as depthwise separable convolutions, fire modules, and channel shuffling 

to optimize for constrained devices. However, there is limited comprehensive and comparative research analyzing how these 

models perform across different embedded platforms under uniform testing conditions. 

This manuscript aims to fill this research gap by providing an in-depth performance evaluation of these models deployed on 

three widely used embedded systems. Through empirical benchmarking, statistical validation, and simulation research, this 

study seeks to offer actionable insights and guidelines for selecting the most suitable model-platform combination for specific 

edge AI applications. Such insights are crucial for developers striving to build responsive, efficient, and intelligent systems 

in resource-constrained environments. 

LITERATURE REVIEW 
The integration of deep learning with embedded systems has attracted substantial attention over the past five years. Several 

studies focus on model optimization techniques such as pruning, quantization, and knowledge distillation. Howard et al. 

(2017) introduced MobileNet, a family of lightweight models based on depthwise separable convolutions, showing efficiency 

gains without substantial accuracy loss. Similarly, Iandola et al. (2016) proposed SqueezeNet, which achieves AlexNet-level 

accuracy with 50x fewer parameters. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fsmartdev.com%2Fai-model-performance-smartdev-guide-to-evaluate-ai-efficiency%2F&psig=AOvVaw10EDq5lnaZmoYpFFVx9saP&ust=1754162168144000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKCzlLmp6o4DFQAAAAAdAAAAABAK
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ShuffleNet, proposed by Zhang et al. (2018), incorporates channel shuffling and pointwise group convolution to reduce 

computation. Meanwhile, Tiny-YOLO, a compact version of the YOLO object detector, has been adopted for real-time object 

detection in constrained environments. 

On the hardware front, embedded platforms such as Raspberry Pi are widely adopted due to their affordability, though they 

suffer from limited processing power. Jetson Nano integrates a GPU and delivers superior performance but at higher power 

consumption. Coral Dev Board, equipped with a TPU, provides hardware acceleration for AI tasks with remarkable power 

efficiency. 

However, a comparative, simulation-backed performance evaluation of multiple lightweight DL models across these 

embedded systems remains limited. This study seeks to bridge this gap by combining empirical analysis with simulation 

benchmarking. 

METHODOLOGY 
3.1 Objective 

To evaluate and compare the real-time performance of MobileNetV2, SqueezeNet, ShuffleNet, and Tiny-YOLO on 

embedded platforms using standardized tasks and metrics. 

3.2 Embedded Platforms 

• Raspberry Pi 4 (4GB): Quad-core Cortex-A72 @ 1.5GHz, 4GB RAM 

• NVIDIA Jetson Nano: Quad-core Cortex-A57 @ 1.43GHz, 128-core Maxwell GPU 

• Google Coral Dev Board: Quad-core Cortex-A53, Edge TPU coprocessor 

3.3 Deep Learning Models 

• MobileNetV2 

• SqueezeNet 

• ShuffleNet 

• Tiny-YOLOv3 

3.4 Evaluation Tasks 

• Image classification: CIFAR-10 and ImageNet subsets 

• Object detection: Pascal VOC dataset 

3.5 Performance Metrics 

• Inference latency (ms) 

• Accuracy (%) 

• Power consumption (Watts) 

• Memory usage (MB) 

• Model size (MB) 

3.6 Experimental Setup 

Each model was tested using Python 3.8 with TensorFlow Lite and PyTorch (depending on compatibility) in identical 

conditions for fair benchmarking. Real-time data was processed through a camera feed simulation. Each test was run 20 

times and averaged. 

STATISTICAL ANALYSIS 
Model Accuracy (%) Inference Time (ms) Memory (MB) Power (W) Model Size (MB) 
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MobileNetV2 90.1 102 256 5.2 14.0 

SqueezeNet 85.6 88 190 3.8 4.8 

ShuffleNet 87.3 96 220 4.1 7.9 

Tiny-YOLOv3 80.5 135 310 6.5 33.5 

 
Fig.3 STATISTICAL ANALYSIS 

Statistical Analysis: One-way ANOVA was conducted to test the significance of inference time across models, yielding 

F(3,76) = 19.87, p < 0.001, indicating statistically significant differences. Tukey's HSD test showed MobileNetV2 and 

SqueezeNet had statistically better performance in latency and energy efficiency compared to Tiny-YOLO. 

 
Simulation Research 

We simulated 10,000 image classification and object detection tasks under three environmental scenarios: 

1. Smart Surveillance System: Detecting intrusions in real-time 

2. Wearable Health Monitors: Classifying vital signs data via visual cues 

3. Autonomous Drones: Real-time object detection during navigation 

Simulations were performed in a containerized setup replicating the runtime environment on each board using Docker and 

TensorRT. 

Key Simulation Observations: 

• Jetson Nano handled Tiny-YOLO best due to GPU acceleration but consumed the most power. 

• Coral Dev Board executed MobileNetV2 and SqueezeNet fastest using Edge TPU acceleration with minimal power. 

• Raspberry Pi 4 struggled with real-time detection tasks but performed reasonably for classification with 

MobileNetV2. 

RESULTS 
6.1 Accuracy 

MobileNetV2 consistently achieved the highest accuracy across tasks with minor variance. Tiny-YOLOv3, while powerful 

in object detection, showed lower classification performance. 

6.2 Latency 
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SqueezeNet achieved the lowest inference time (88 ms) across all platforms, ideal for time-critical tasks. However, it slightly 

trailed in accuracy. 

6.3 Power and Memory 

Coral Dev Board’s synergy with MobileNetV2 and SqueezeNet resulted in optimal performance-per-watt ratios. Raspberry 

Pi had the highest memory overhead when using Tiny-YOLO. 

6.4 Model Size 

SqueezeNet was the most compact, making it ideal for constrained storage environments. 

CONCLUSION 
This study comprehensively evaluated the deployment performance of four lightweight deep learning models—

MobileNetV2, SqueezeNet, ShuffleNet, and Tiny-YOLO—on three leading embedded AI platforms. Through a combination 

of empirical benchmarking and simulation, it was found that: 

• MobileNetV2 provides the best overall balance between accuracy and latency. 

• SqueezeNet is optimal for ultra-low-power or storage-constrained devices. 

• Tiny-YOLOv3 should be used only when advanced object detection is needed and hardware acceleration is 

available (e.g., Jetson Nano). 

• ShuffleNet offers a middle-ground solution with consistent performance across tasks. 

Future work may focus on applying advanced model compression techniques such as quantization-aware training and neural 

architecture search (NAS) for even more efficient embedded AI. 
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