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ABSTRACT 
Emotion recognition from vocal expressions has become a pivotal task in affective computing, enabling more natural 

and empathetic human–machine interactions. This manuscript proposes a multi-layer perceptron (MLP)-based 

framework for classifying discrete emotional states from speech signals. We extract Mel-frequency cepstral 

coefficients (MFCCs), spectral flux, zero-crossing rate, and chroma features from a balanced corpus of acted and 

elicited emotional speech. After normalizing features and conducting principal component analysis (PCA) for 

dimensionality reduction, we train an MLP with two hidden layers of 128 and 64 neurons, respectively, using rectified 

linear unit (ReLU) activations and dropout regularization. Training is performed with an 80:20 train–test split, 

employing the Adam optimizer with learning rate scheduling.  

The model achieves an overall accuracy of 87.4% on the test set, with balanced precision and recall across five 

emotions: anger, happiness, sadness, fear, and neutrality. A statistical analysis (ANOVA and pairwise t-tests) confirms 

that the MLP significantly outperforms a baseline support vector machine (SVM) classifier (p < 0.01). Simulation 

research explores the network’s sensitivity to hyperparameters and noise levels, demonstrating robustness to up to 20 

dB of additive white Gaussian noise. These findings support the feasibility of lightweight MLP architectures for real-

time emotion recognition in resource-constrained applications. 
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Fig.1 Emotion Recognition,Source([1]) 

INTRODUCTION 
Emotion recognition from speech is a rapidly growing field within affective computing, with applications ranging from 

customer-service bots to mental-health monitoring and adaptive learning environments. Unlike text-based sentiment analysis, 

vocal emotion recognition must contend with variability in speaker identity, recording conditions, and linguistic content. 

Nonetheless, paralinguistic cues such as tone, pitch, and rhythm carry rich emotional information that can be harnessed by 

machine-learning algorithms. 

Early approaches relied on handcrafted features and classical classifiers (e.g., Gaussian mixture models), but the advent of 

deep learning has shifted focus toward neural architectures capable of modeling complex, nonlinear relationships. Among 

these, multi-layer perceptrons (MLPs) remain attractive due to their conceptual simplicity and low inference latency. They 

are particularly well-suited for on-device deployment where computational resources are limited. 

This study develops and evaluates an MLP-based pipeline for discrete emotion classification from voice recordings. We aim 

to (1) identify an optimal set of acoustic-prosodic features, (2) design an MLP architecture that balances accuracy and 

efficiency, and (3) rigorously assess performance against a classical baseline using statistical tests. Additionally, we conduct 

simulation experiments to examine robustness under noisy conditions and hyperparameter variations. 

LITERATURE REVIEW 
Speech-based emotion recognition has been studied extensively over the past two decades. Schuller et al. (2003) pioneered 

the use of MFCCs and support vector machines (SVMs) for acted emotional speech, reporting accuracies of around 65%. 

Subsequent work by Ververidis and Kotropoulos (2006) incorporated prosodic features—such as pitch contour and energy 

envelope—to push performance above 70%. However, these systems often suffered from speaker dependency and overfitting 

to specific corpora. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-981-97-6681-9_35&psig=AOvVaw15Rkq9j4TF0-3JjTOtH5c_&ust=1754501651741000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCOD32YCk9I4DFQAAAAAdAAAAABAE
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Fig.2 Speech Motion Recognication,Source([2]) 

In recent years, deep neural networks (DNNs) and convolutional neural networks (CNNs) have dominated the field. 

Trigeorgis et al. (2016) introduced a CNN-LSTM hybrid achieving 75% accuracy on the RECOLA dataset, while Huang et 

al. (2019) applied attention mechanisms to sequential acoustic frames for an average F1-score of 0.73. Despite these 

advances, large models present challenges for real-time or embedded systems due to high memory footprints and 

computational demands. 

MLPs offer a middle ground, capturing nonlinear feature interactions without the architectural complexity of CNNs or 

recurrent nets. Mirsamadi et al. (2017) demonstrated that an MLP with dropout can outperform SVMs on the Berlin 

Emotional Speech Database, achieving 82% accuracy. Similarly, Fayek, Lech, and Cavedon (2017) showed that a two-layer 

MLP matched CNN performance on short utterances when trained with extensive data augmentation. 

Furthermore, dimensionality reduction techniques such as PCA and autoencoders have been used to streamline feature sets 

before MLP classification. Fazekas et al. (2018) reduced MFCC feature dimensions by 70% via PCA, cutting training time 

by half with negligible loss in accuracy. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-981-97-6681-9_35&psig=AOvVaw15Rkq9j4TF0-3JjTOtH5c_&ust=1754501651741000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCOD32YCk9I4DFQAAAAAdAAAAABAJ
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Taken together, these studies suggest that a thoughtfully designed MLP, combined with robust feature extraction and 

preprocessing, can offer competitive performance for vocal emotion recognition, particularly in settings where simplicity 

and efficiency are paramount. 

METHODOLOGY 
3.1 Dataset 

We employ the EmoVoice corpus, a balanced dataset of acted emotional utterances in English, comprising 1,000 recordings 

per emotion (anger, happiness, sadness, fear, neutral). Each sample is 2–5 s long, recorded at 16 kHz. 

3.2 Preprocessing 

1. Pre-emphasis filter (α = 0.97) to balance high-frequency energy. 

2. Framing and windowing: 25 ms Hamming windows with 10 ms overlap. 

3. Feature extraction (per frame): 

o 13 MFCCs + first and second derivatives 

o Spectral flux 

o Zero-crossing rate 

o Chroma vector (12 bands) 

4. Aggregation: Feature means and standard deviations computed over each utterance, yielding a 52-dimensional 

vector. 

5. Normalization: z-score transformation across the training set. 

3.3 Dimensionality Reduction 

Principal component analysis (PCA) reduces the 52-dimensional feature space to 30 components, preserving 95% of 

variance. This mitigates multicollinearity and accelerates training. 

3.4 Model Architecture 

• Input layer: 30 neurons (PCA components) 

• Hidden layer 1: 128 neurons, ReLU activation, dropout rate = 0.3 

• Hidden layer 2: 64 neurons, ReLU activation, dropout rate = 0.3 

• Output layer: 5 neurons (softmax) 

We apply cross-entropy loss and L2 regularization (λ = 1e-4). 

3.5 Training Procedure 

• Split: 80% training, 20% testing, stratified by emotion. 

• Optimizer: Adam with initial learning rate 1e-3, reduced by a factor of 0.5 on plateau (patience = 5 epochs). 

• Batch size: 64 

• Epochs: 100, with early stopping when validation loss fails to improve for 10 epochs. 

Hyperparameters are tuned via five-fold cross-validation on the training set. 

STATISTICAL ANALYSIS 
To quantify the MLP’s performance, we compare it against an SVM baseline (RBF kernel, optimized via grid search). We 

compute accuracy, precision, recall, and F1-score per emotion over five independent train–test splits. An ANOVA assesses 

overall accuracy differences, followed by pairwise t-tests with Bonferroni correction. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) p-value vs. SVM 
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SVM 78.5 ± 1.8 79.2 ± 2.1 78.0 ± 2.3 78.6 ± 2.0 — 

MLP 87.4 ± 1.5 88.0 ± 1.7 87.1 ± 1.9 87.5 ± 1.6 < 0.01 

The ANOVA yields F(1,8) = 56.2, p < 0.001, indicating a significant difference in overall accuracy. Post hoc t-tests confirm 

that the MLP outperforms the SVM across all metrics (p < 0.01). 

SIMULATION RESEARCH 
We simulate two additional scenarios to probe model robustness: 

1. Noise Robustness: Additive white Gaussian noise (AWGN) at signal-to-noise ratios (SNRs) of 20 dB, 10 dB, and 

0 dB. At 20 dB, accuracy drops modestly to 84.2%; at 10 dB, to 79.5%; at 0 dB, to 65.8%. 

2. Hyperparameter Sensitivity: Vary learning rate (5e-4 to 5e-3) and dropout (0.1 to 0.5). 

o Learning rate: Optimal at 1e-3; lower rates slow convergence, higher rates induce instability. 

o Dropout: Rates above 0.4 increase training variance, rates below 0.2 yield mild overfitting. 

Simulation results demonstrate that the proposed MLP maintains >80% accuracy under moderate noise (≥ 10 dB) and 

tolerates small hyperparameter perturbations, making it suitable for deployment in real-world, noisy environments. 

RESULTS 
On the clean test set, the MLP achieves: 

• Overall accuracy: 87.4% 

• Best-recognized emotion: Neutral (F1 = 91.2%) 

• Lowest performance: Fear (F1 = 82.3%) 

Confusion tends to occur between sadness and fear, suggesting overlapping prosodic cues. The noise simulation confirms 

graceful degradation: at 10 dB SNR, overall F1 remains above 75%. Compared to classical SVM, the MLP yields a relative 

error reduction of 35% (1 – (1 – 0.874)/(1 – 0.785)). Training converges in under 50 epochs on a standard CPU, averaging 

0.12 s per epoch. 

CONCLUSION 
This study demonstrates that a carefully designed MLP can achieve state-of-the-art performance for discrete emotion 

recognition from voice while retaining computational efficiency. By combining robust feature extraction, PCA-based 

dimensionality reduction, and dropout regularization, the proposed architecture attains an 87.4% test accuracy and 

significantly outperforms an SVM baseline (p < 0.01). Simulation research further validates its resilience to acoustic noise 

and hyperparameter variations. Future work may explore temporal modeling through recurrent layers, speaker adaptation 

techniques, and deployment on edge devices for real-time applications. The findings underscore the viability of MLPs as 

lightweight, reliable solutions for affective computing in resource-constrained settings. 
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