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ABSTRACT 
Multi-view clustering has emerged as a powerful paradigm for uncovering latent group structures in Big Data by 

simultaneously leveraging multiple complementary representations (views) of the same underlying entities. 

Traditional single-view clustering methods often suffer when confronted with heterogeneous, high-dimensional data 

typical of modern applications such as social network analysis, bioinformatics, and multimedia retrieval. In this 

manuscript, we compare and analyze three representative multi-view clustering algorithms—multi-view k-means, co-

regularized spectral clustering, and deep multi-view clustering via autoencoders—on synthetic and real‐world large-

scale datasets. We introduce a systematic evaluation framework that assesses clustering quality using standard 

validity indices (Silhouette Score, Dunn Index, Davies–Bouldin Index) and computational efficiency in terms of 

runtime and memory consumption.  

A synthetic dataset of 10,000 samples with three distinct feature views is generated to facilitate controlled experiments, 

while a real-world dataset from social media image annotations is used to validate practical applicability. Our results 

indicate that deep multi-view clustering provides superior cluster cohesion and separation at the expense of higher 

computational cost, whereas co-regularized spectral clustering strikes a balance between performance and scalability. 

We conclude with recommendations for algorithm selection in various Big Data contexts and outline directions for 

enhancing scalability and robustness in future research. 
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INTRODUCTION 
In recent years, the proliferation of large-scale, heterogeneous datasets—spanning text, images, sensor readings, and network 

logs—has challenged conventional data analysis techniques. Single-view clustering methods, which operate on a single 

feature representation, often fail to capture the full complexity inherent in multi-modal data (e.g., user behavior logs 
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combined with social graph features). Multi-view clustering aims to remedy this by jointly processing multiple 

complementary views, each providing unique insights into the latent grouping structure (Sun et al., 2020). 

 
Fig.1 Multi-View Clustering Algorithms,Source([1]) 

Big Data scenarios exacerbate the challenges of clustering due to sheer data volume, high dimensionality, and noise. 

Scalability in time and memory, robustness to view-specific noise, and the capability to integrate disparate feature spaces are 

essential characteristics of any effective multi-view clustering algorithm in these contexts. Recent methodological advances 

have introduced co-regularization frameworks that enforce agreement between view-specific clusterings, spectral approaches 

that embed each view into a common low-dimensional space, and deep learning models that learn a unified latent 

representation through autoencoder architectures. Yet, a systematic empirical comparison under controlled conditions and at 

Big Data scales remains scarce. 

This manuscript addresses this gap by: 

1. Describing three well-established multi-view clustering algorithms spanning centroid-based, spectral, and deep 

learning paradigms. 

2. Proposing an evaluation protocol that uses synthetic data to isolate algorithmic behaviors and a real-world dataset 

to assess practical viability. 

3. Reporting clustering quality via multiple validity indices alongside computational performance metrics. 

4. Discussing trade-offs among methods and recommending application scenarios for each. 

The remainder of the paper is organized as follows. Section 2 reviews literature on multi-view clustering and related Big 

Data applications. Section 3 details the experimental methodology, including dataset generation, algorithmic parameters, and 

evaluation metrics. Section 4 presents statistical analysis of clustering quality. Section 5 describes the simulation study setup. 

Section 6 reports results on both synthetic and real-world datasets. Section 7 concludes with key findings and future research 

directions. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41598-020-70229-1&psig=AOvVaw3GodppNPZarhYLgaShxmv6&ust=1754505934307000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCLi9mtWq9I4DFQAAAAAdAAAAABAE
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Fig.2 Big Data Analytics,Source([2]) 

LITERATURE REVIEW 
Multi-view clustering has its roots in early work on co-training for semi-supervised learning (Blum & Mitchell, 1998), which 

inspired co-training–inspired clustering methods that iteratively refine cluster assignments across views. Bickel and Scheffer 

(2004) formalized this idea for clustering by alternating k-means updates on each view and exchanging pseudo-labels. 

Subsequent research by Kumar, Rai, and Daumé III (2011) introduced co-regularization, adding penalty terms that encourage 

consistency between view-specific spectral embeddings. 

Spectral clustering itself has been widely adopted for single-view data (Ng, Jordan, & Weiss, 2002) and extended to multi-

view settings by constructing a joint similarity graph whose Laplacian eigenvectors capture shared structure. For large 

datasets, landmarks or Nyström approximations have been employed to reduce the complexity of eigen-decomposition (Zhao 

et al., 2013). 

Deep learning–based multi-view clustering emerged more recently, leveraging the representational power of autoencoders 

to learn non-linear embeddings for each view. Works such as Cao et al. (2015) demonstrated that a joint deep autoencoder 

with clustering-oriented loss functions can outperform classical methods, especially when views exhibit complex 

correlations. Variants incorporating adversarial training and graph neural networks have further enhanced performance on 

unstructured data (Yang et al., 2020). 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FClassification-of-big-data-clustering-algorithms-55_fig2_351344416&psig=AOvVaw3GodppNPZarhYLgaShxmv6&ust=1754505934307000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCLi9mtWq9I4DFQAAAAAdAAAAABAJ
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Despite these advances, combining scalability with clustering accuracy remains challenging. Centroid-based methods (e.g., 

multi-view k-means) scale linearly with sample size but assume spherical clusters. Spectral methods capture richer geometry 

but incur 𝑂(𝑛³) complexity for eigen-decomposition on n samples. Deep models handle non-linear patterns but require careful 

tuning and GPU resources. Our comparative study contributes by quantifying these trade-offs under identical experimental 

conditions. 

METHODOLOGY 
3.1 Algorithms Evaluated 

1. Multi-view k-means (MV-KMeans): Extends standard k-means by averaging centroids across views. At each 

iteration, cluster assignments are updated based on a weighted sum of distances in each view’s feature space. We 

set equal weights for all three views. 

2. Co-regularized Spectral Clustering (CSpectral): Constructs individual similarity graphs 𝐺ᵢ for view i, computes 

Laplacians ℒᵢ, and solves a joint eigenproblem with co-regularization penalties λǁ𝑈ᵢ − 𝑈ⱼǁ² encouraging alignment 

between eigenvector matrices 𝑈ᵢ and 𝑈ⱼ_ for all view pairs. We tune λ via grid search. 

3. Deep Multi-view Autoencoder Clustering (DMAEC): Trains view-specific autoencoders sharing a common 

clustering layer. Reconstruction and clustering losses are balanced by hyperparameter α. We use three hidden layers 

(128, 64, 32 neurons) per view and concatenate embeddings before a soft-assignment clustering layer. 

3.2 Data Generation 

A synthetic dataset with 10,000 samples is created, each sample drawn from one of five Gaussian clusters in ℝ²⁰ for each of 

three views. Cluster centers are randomly sampled on the unit hypersphere; covariance matrices are diagonal with variances 

chosen to control cluster overlap. We introduce 10% Gaussian noise per view. 

3.3 Real-World Dataset 

We use a publicly available multimedia dataset comprising 8,000 images, each annotated with two view features: (1) color 

histograms (64-dimensional) and (2) texture descriptors (32-dimensional), and (3) user‐generated tag embeddings (100-

dimensional) obtained via word2vec. Ground truth labels correspond to 10 object categories. 

3.4 Evaluation Metrics 

Clustering quality is assessed using: 

• Silhouette Score (SS): Measures how similar an object is to its own cluster compared to other clusters. 

• Dunn Index (DI): Ratio between minimum inter-cluster distance and maximum intra-cluster diameter. 

• Davies–Bouldin Index (DBI): Average similarity measure of each cluster with its most similar one (lower is better). 

Computational efficiency is measured by total runtime and peak memory usage recorded on a workstation with 32 GB RAM 

and a 12-core CPU. 

3.5 Experimental Protocol 

For each algorithm, we run five independent trials with different random initializations. Parameters (k = 5 clusters) are held 

constant; grid search determines λ for CSpectral in {0.1, 1, 10}, and α for DMAEC in {0.01, 0.1, 1}. Average scores across 

trials are reported. 

STATISTICAL ANALYSIS 
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We perform ANOVA tests to compare the average validity indices across the three algorithms and follow up with Tukey’s 

HSD for pairwise comparisons. All tests use a significance level of 0.05. Table 1 summarizes the average clustering quality 

metrics on the synthetic dataset. 

Table 1. Statistical Analysis of Cluster Validity Indices on Synthetic Data 

Algorithm Silhouette Score (M 

± SD) 

Dunn Index (M 

± SD) 

Davies–Bouldin Index 

(M ± SD) 

Runtime (s) (M 

± SD) 

Memory 

(GB) 

MV-

KMeans 

0.45 ± 0.02 0.62 ± 0.03 1.90 ± 0.05 12.3 ± 1.1 2.1 

CSpectral 0.52 ± 0.01 0.75 ± 0.02 1.45 ± 0.04 48.7 ± 2.5 4.8 

DMAEC 0.60 ± 0.03 0.88 ± 0.04 1.10 ± 0.03 75.2 ± 5.0 6.5 

An ANOVA on Silhouette Scores reveals a significant effect of algorithm choice (F(2,12) = 45.6, p < 0.001). Tukey’s HSD 

indicates that DMAEC outperforms CSpectral (p = 0.02) and MV-KMeans (p < 0.001), and CSpectral outperforms MV-

KMeans (p = 0.03). Similar patterns hold for Dunn Index and Davies–Bouldin Index. 

5. Simulation Study 

The simulation study investigates algorithm behavior under varying data scales and noise levels. We generate additional 

synthetic datasets with sample sizes {5 000, 10 000, 20 000} and noise variances {5%, 10%, 20%}. For each configuration, 

we record clustering validity indices and runtime. 

• Scalability experiment: As sample size doubles, MV-KMeans runtime scales linearly (∼25 s for 20 000 samples), 

CSpectral scales superlinearly due to eigen-decomposition (∼120 s), while DMAEC’s GPU‐accelerated training 

shows near‐linear scaling (∼160 s). 

• Robustness to noise: At 20% noise, Silhouette Scores drop by 15% for MV-KMeans, 10% for CSpectral, and only 

7% for DMAEC, demonstrating deep model resilience to feature perturbations. 

These simulations confirm that while centroid‐based methods remain the fastest for very large datasets, they degrade more 

under noise. Spectral methods offer a compromise, and deep models deliver the highest accuracy but require greater 

computational resources. 

RESULTS 
6.1 Synthetic Dataset 

DMAEC achieved the highest average Silhouette Score (0.60), indicating well‐separated clusters; CSpectral followed at 

0.52, and MV-KMeans trailed at 0.45. Dunn Index improvements of 42% (DMAEC vs. MV-KMeans) and Davies–Bouldin 

Index reductions of 42% underscore the superior balance of cohesion and separation realized by the deep model. 

6.2 Real-World Dataset 

On the multimedia dataset, results mirror synthetic findings: 

• MV-KMeans: SS = 0.38, DI = 0.50, DBI = 2.05 

• CSpectral: SS = 0.47, DI = 0.68, DBI = 1.60 

• DMAEC: SS = 0.55, DI = 0.82, DBI = 1.25 

Runtime overheads were consistent with synthetic experiments. DMAEC required fine‐tuning of autoencoder architectures 

but yielded the highest categorical purity when mapping clusters to true labels (78% vs. 65% for CSpectral and 52% for MV-

KMeans). 
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6.3 Trade-off Analysis 

• Accuracy vs. Efficiency: DMAEC offers the best clustering accuracy and robustness to noise at ∼1.5× the runtime 

of CSpectral. CSpectral itself runs ∼4× slower than MV-KMeans but gains ∼15% in Silhouette Score. 

• Scalability: MV-KMeans is most scalable in memory‐limited environments; GPU‐enabled DMAEC is feasible 

when hardware resources allow. CSpectral’s eigen-decomposition can be accelerated via landmark‐based 

approximations for very large datasets. 

CONCLUSION 
This comparative study demonstrates that the choice of multi-view clustering algorithm in Big Data analytics involves clear 

trade‐offs between clustering quality, computational cost, and robustness. Deep multi-view clustering via autoencoders 

consistently delivers the highest cluster validity and noise resilience but at increased runtime and memory requirements. Co-

regularized spectral clustering offers a middle ground, improving over centroid-based methods by capturing non-linear 

relationships with moderate computational overhead. Multi-view k-means remains a viable option when scalability and 

simplicity are paramount, particularly in resource-constrained environments. 

For practitioners, we recommend: 

• High‐accuracy, moderate‐scale scenarios: Employ deep multi-view clustering when GPU resources are available 

and the primary goal is maximizing cluster separation. 

• Large‐scale, limited‐infrastructure settings: Use multi-view k-means or accelerated spectral methods with 

landmark approximations to balance speed and quality. 

• Mixed‐constraint environments: Co-regularized spectral clustering provides robust performance without 

requiring deep learning expertise. 

Future work should explore: 

1. Adaptive weighting schemes that learn view importance dynamically. 

2. Graph neural network–based clustering that directly incorporates relational data. 

3. Online multi-view clustering for streaming Big Data applications. 

By systematically quantifying algorithmic strengths and limitations, this manuscript guides informed selection of multi-view 

clustering approaches in diverse Big Data contexts. 
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