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ABSTRACT

With the exponential growth of email communication, malicious actors increasingly embed harmful URLSs in spam
messages to phish, distribute malware, or facilitate fraud. Traditional rule-based and shallow machine-learning
approaches struggle to generalize to novel URL patterns and obfuscation techniques. Deep learning, with its capacity
for hierarchical feature extraction and sequence modeling, offers a promising solution for robust spam URL detection.
This manuscript presents a comprehensive study of multiple deep neural architectures—including Convolutional
Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), and transformer-based models—applied
to the task of identifying spam URLSs in email corpora. We detail a pipeline encompassing data collection and labeling,
URL tokenization, character-level and word-level embeddings, and model training via stratified k-fold cross-
validation. Statistical comparisons are conducted using one-way ANOVA and post-hoc testing to assess performance
differentials among models.

A simulation environment is developed to mimic real-world email traffic with configurable spam injection rates,
enabling assessment of detection latency and throughput under varying load conditions. Results demonstrate that
transformer-based encoders achieve peak detection accuracy (95.8 % £ 0.9 %) and Fl-score (0.956 £+ 0.008),
significantly outperforming CNN (92.3 % + 1.2 %) and LSTM (93.1 % + 1.0 %) baselines. The conclusions underscore
the trade-offs between detection performance, computational cost, and real-time applicability, offering guidelines for
deployment in enterprise email security gateways.
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INTRODUCTION

Email remains one of the most ubiquitous and essential channels of digital communication, with over 300 billion messages
exchanged daily worldwide. Unfortunately, its openness also makes it an appealing vector for cyber-attacks, notably through
the distribution of spam containing malicious URLs. Such URLs can redirect recipients to phishing pages, exploit kits, or
command-and-control servers, resulting in credential theft, ransomware infection, or network compromise. According to
recent security reports, over 55 % of detected spam emails contain at least one suspicious link, and attackers continuously

evolve URL-obfuscation methods, such as URL shortening, homoglyph substitution, and dynamic URL generation.
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Fig. 1 Deep Learning Techniques,Source([1])

Conventional spam filters—relying on manually crafted rules, blacklists, or shallow classifiers using handcrafted features—
often fail when confronted with novel obfuscation techniques or zero-day malicious domains. Deep learning offers automated
feature learning and robust generalization, making it well-suited to detect patterns in URL strings that defy manual feature
engineering. Recent advances in natural language processing, particularly transformer models, enable context-sensitive
sequence modeling at scale, further boosting detection efficacy.

This manuscript investigates the application of diverse deep learning architectures for spam URL detection, comparing their
accuracy, precision, recall, and F1-score on a large public email dataset. We introduce a simulation framework replicating
realistic email traffic patterns to evaluate each model’s detection latency and throughput. Finally, we conduct rigorous

statistical analyses to quantify performance differences and discuss practical deployment considerations.

LITERATURE REVIEW

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)


https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2079-9292%2F12%2F20%2F4261&psig=AOvVaw3qtaSLqLri-cmTltuIPbI4&ust=1754508221245000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKD2maez9I4DFQAAAAAdAAAAABAE

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue-2 || Apr-Jun 2025 || PP. 27-33

2.1 Traditional Spam Detection Approaches

Early spam filters utilized heuristic rules and blacklists, flagging emails containing specific keywords or known malicious
domains. While easy to implement, these methods lacked adaptability; attackers circumvented rules through text obfuscation
(e.g., “Fr€€” instead of “Free”) and domain fast-flux techniques. Shallow machine-learning classifiers—such as Naive
Bayes, Support Vector Machines, and Random Forests—improved robustness by learning from features like term frequency—
inverse document frequency (TF-IDF), URL length, and host-name entropy. However, these approaches still depended

heavily on manually selected features and struggled with novel URL patterns.
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Fig.2 Spam URL Detection in Emails,Source(/2])

2.2 Character-Level and Sequence-Level Feature Learning
To overcome handcrafted feature limitations, researchers explored character-level n-gram features and sequence models.

:7” [731)

Character-level CNNs automatically extract local patterns (e.g., “.php? ) that indicate malicious intent, while recurrent
neural networks (RNNs), including LSTMs and Gated Recurrent Units (GRUs), model longer-range dependencies in URL
strings. Character-level LSTMs demonstrated improved recall in detecting obfuscated URLs but suffered from computational
inefficiency on long sequences.

2.3 Transformer-Based Models

Transformer architectures—featuring self-attention mechanisms—have revolutionized NLP by capturing global contextual
dependencies without recurrent structures. Pretrained language models (e.g., BERT, RoBERTa) fine-tuned on domain-

specific corpora achieve state-of-the-art in many text classification tasks. Recent studies show that transformer encoders,

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)


https://www.google.com/url?sa=i&url=https%3A%2F%2Fjournals.sagepub.com%2Fdoi%2F10.3233%2FJCS-200111&psig=AOvVaw3qtaSLqLri-cmTltuIPbI4&ust=1754508221245000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKD2maez9I4DFQAAAAAdAAAAABAJ

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue-2 || Apr-Jun 2025 || PP. 27-33

trained on URL token sequences, can discern subtle semantic anomalies introduced by obfuscation or homograph attacks,
outperforming both CNN and LSTM baselines in malicious URL detection.
2.4 Gaps and Contributions
While prior work highlights deep learning’s promise for URL classification, few studies directly compare multiple
architectures under a unified experimental framework, nor do they analyze real-time detection performance under simulated
email traffic loads. This manuscript bridges these gaps by:
1. Implementing and evaluating CNN, LSTM, and transformer-based models on the same dataset with consistent
preprocessing and evaluation protocols.
2. Conducting statistical hypothesis testing (one-way ANOVA) to quantify performance differences.
3. Developing a simulation environment to assess detection latency and throughput across diverse traffic scenarios.
METHODOLOGY
3.1 Data Collection and Preprocessing
We utilize the “Email URL Spam” dataset, comprising 200,000 email messages labeled “spam” or “ham,” each containing
one or more URLs. From this corpus, 120,000 spam and 80,000 legitimate (ham) emails were randomly sampled to ensure
balanced class representation during training. URLs were extracted using regular expressions and normalized (percent-
decoded, lowercased). Non-ASCII characters were retained to capture homoglyph attacks.
3.2 Tokenization and Embedding
Two parallel embedding strategies were employed:
e Character-Level Embedding: Each URL is treated as a sequence of up to 200 characters. Characters are mapped
to a 32-dimensional vector via an embedding layer trained from scratch.
e Subword Tokenization: URLs are tokenized using Byte-Pair Encoding (BPE) with a vocabulary size of 5,000.
Token embeddings of size 128 are learned during model training.
3.3 Model Architectures
Three model classes were implemented in TensorFlow 2.0:
1. CNN: Two convolutional layers with filter sizes [3, 5] and 128 filters each, followed by max-pooling and a dense
classification head.
2.  LSTM: A bidirectional LSTM layer with 64 units per direction, followed by dropout (rate = 0.5) and a dense output.
3. Transformer Encoder: A stack of four encoder layers, each with 8 attention heads, hidden size 256, feed-forward
dimension 512, followed by global average pooling and a dense head.
All models conclude with a sigmoid output for binary classification.
3.4 Training Protocol
e Loss Function: Binary cross-entropy
e Optimizer: Adam (learning rate = le-4)
e Batch Size: 256
e Epochs: 20 with early stopping (patience = 3) on validation loss
e Validation Split: 10 % of training data
e Cross-Validation: Stratified 5-fold, ensuring class balance in each fold

3.5 Performance Metrics
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We measure accuracy, precision, recall, and F1-score on held-out test folds. Mean and standard deviation across folds are
reported.

STATISTICAL ANALYSIS

To determine whether observed performance differences among CNN, LSTM, and transformer models are statistically
significant, we conduct a one-way ANOVA on F1-scores across the five cross-validation folds, followed by Tukey’s Honest
Significant Difference (HSD) post-hoc tests. The significance threshold is set at o = 0.05.

Table 1. Cross-Validation Performance Summary (Mean + SD)

Model Accuracy (%) Precision Recall F1-Score

CNN 923+1.2 0.918 £0.010 0.907 +0.012 0.912 +£0.011
Bidirectional LSTM 93.1£1.0 0.926 +0.008 0.918 = 0.009 0.922 +0.009
Transformer Encoder 95.8+0.9 0.961 + 0.007 0.952 +0.010 0.956 +0.008

Note: Performance metrics are averaged over five folds (N = 5).
The ANOVA yields F(2, 12) = 18.7, p <0.001, indicating significant differences. Tukey’s HSD confirms that the transformer
encoder outperforms both CNN (p = 0.002) and LSTM (p = 0.01), while LSTM also slightly but significantly outperforms
CNN (p =0.04).
SIMULATION RESEARCH
5.1 Simulation Environment
We design a modular simulation framework in Python to emulate real-world email traffic ingestion and URL scanning.
Components include:
e Traffic Generator: Synthesizes email arrival events following a Poisson process with configurable average arrival
rates A € {100, 500, 1,000} messages per second.
e Spam Injector: Randomly selects a proportion p € {5 %, 10 %, 20 %} of messages to contain spam URLs, drawn
from the spam subset of the dataset.
e Detection Pipeline: Each incoming URL is passed through the trained model in inference mode. Latency per URL
classification is recorded.
e Metrics Collector: Captures detection throughput (URLs/sec), average detection latency (ms), and false negative
and false positive rates at each traffic and spam-injection setting.
5.2 Experimental Procedure
For each model and each combination of A and p, we run the simulation for 10,000 messages, repeating each scenario three
times to account for randomness. Key dependent variables:
e  Mean Detection Latency: Time from URL ingestion to classification output.
e Throughput: Number of URLs classified per second.
o False Negative Rate (FNR): Undetected spam URLs divided by total spam URLs.
o False Positive Rate (FPR): Legitimate URLs incorrectly flagged as spam divided by total legitimate URLs.
RESULTS

6.1 Cross-Validation Performance
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As shown in Table 1, the transformer encoder achieves the highest mean accuracy (95.8 % % 0.9 %) and F1-score (0.956 +
0.008), followed by LSTM (F1 = 0.922 + 0.009) and CNN (F1 = 0.912 £ 0.011). Precision and recall trends mirror the F1-
score ranking, indicating balanced error profiles.
6.2 Simulation Performance
Figure 1 (not shown) illustrates detection latency and throughput for each model under A = 500 msgs/sec and p = 10 %. Key
observations:

e Latency: CNN: 8.2 ms/message; LSTM: 12.5 ms/message; Transformer: 20.3 ms/message.

e  Throughput: CNN: 122 URLs/sec; LSTM: 80 URLs/sec; Transformer: 49 URLs/sec.
Under higher traffic (A = 1,000 msgs/sec), transformer inference on a single GPU cannot meet real-time demands; batching
improves throughput but increases average latency to over 35 ms. Conversely, the CNN model sustains >100 URLs/sec with
latency <10 ms, making it more suitable for constrained environments despite lower detection accuracy.
6.3 Error Rates
Across all scenarios, the transformer maintains FNR < 4 % and FPR < 2 %, compared to LSTM (FNR = 7 %, FPR = 3 %)
and CNN (FNR = 9 %, FPR = 4 %). This robustness to class imbalance and obfuscated URLs underscores the value of self-

attention in capturing global sequence contexts.
CONCLUSION

This study systematically evaluates deep learning architectures—CNN, bidirectional LSTM, and transformer encoder—for
spam URL detection in email messages. Our findings reveal that transformer-based models yield superior classification
performance (F1 = 0.956), significantly exceeding traditional sequence and convolutional baselines. However, higher
computational costs and inference latency limit their applicability in high-throughput, low-latency scenarios. CNN models,
while slightly less accurate, offer a pragmatic balance of speed and resource efficiency, sustaining real-time detection (>100
URLs/sec at <10 ms latency) on commodity hardware.

Statistical analyses confirm that performance differences are not due to chance, and simulation research highlights the
importance of matching model choice to deployment constraints. For enterprise email gateways prioritizing maximal
security—and possessing GPU resources—the transformer encoder is recommended. In contrast, edge deployments (e.g.,
on-device email clients) would benefit from optimized CNN pipelines.

Future work should explore model compression and quantization techniques to reduce transformer inference overhead, as
well as continual learning frameworks to adapt to evolving URL obfuscation tactics. Incorporating meta-information—such
as domain age and WHOIS records—into hybrid models may further bolster detection accuracy. By integrating these

advances, deep learning can provide robust, scalable defenses against the ever-evolving threat of spam URLs.
REFERENCES

o Alshamrani, A., & Khan, 1. (2018). A deep learning approach for malicious URL detection. IEEE Access, 6, 5693-5701.

. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

. Chen, T., Liu, Z., & Tong, S. (2019). CNN-based phishing URL detection. In 2019 IEEE International Conference on Communications (ICC) (pp. 1—
6). IEEE.

. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555.

e Devnary, B., & Sharma, T. (2020). Deep learning for spam detection in email communications. Journal of Information Security and Applications, 55,

102616.

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue-2 || Apr-Jun 2025 || PP. 27-33

e Dong, J., Hu, S., Song, Q., Liao, Y., & Jiang, X. (2020). PhishBERT: An effective phishing URL detection model with contextualized language
representation. In 2020 IEEE International Conference on Web Services (ICWS) (pp. 101-109). IEEE.

. Goodfellow, L, Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

e Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

e Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

o  Liu H, & Liao, X. (2021). A transformer-based approach for malicious URL detection. Journal of Network and Computer Applications, 176, 102947.

o Ma, J, Saul, L. K., Savage, S., & Voelker, G. M. (2009). Identifying suspicious URLs: An application of large-scale online learning. In Proceedings
of the 26th Annual International Conference on Machine Learning (pp. 681-688).

. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog.

. Saxe, J., & Berlin, K. (2015). Deep neural network-based malware detection using two-dimensional binary program features. In 2015 10th
International Conference on Malicious and Unwanted Software (MALWARE) (pp. 11-20). IEEE.

. Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673—-2681.

. Shafig, M. Z., Tabish, S., Shah, S. M. 1., & Farooq, M. (2009). A framework for detection and measurement of phishing activities. In Proceedings of
the 2009 ACM Symposium on Applied Computing (pp. 1120-1126).

. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

. Sinha, M., & Haque, M. (2021). Sequence-based phishing URL detection using deep learning. Computers & Security, 108, 102348.

. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, £., & Polosukhin, I. (2017). Attention is all you need. In Advances
in Neural Information Processing Systems (Vol. 30, pp. 5998-6008).

. Wang, W., Zhu, M., Wang, X., Wang, J., & Lin, M. (2018). Malicious URL detection using machine learning: A survey. IEEE Communications Surveys
& Tutorials, 21(2), 1423-1447.

. Zhang, C., Hong, J., & Zhao, Z. (2022). Real-time detection of phishing URLs based on deep learning. IEEE Transactions on Information Forensics
and Security, 17, 2345-2357.

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



