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ABSTRACT

Homomorphic encryption (HE) has emerged as a pivotal cryptographic technique for enabling end-to-end privacy in
machine learning workflows. By allowing arbitrary computations on encrypted data without exposing plaintext, HE
addresses stringent privacy requirements across domains such as healthcare, finance, and telecommunications. This
manuscript deepens the exploration of HE’s role in privacy-preserving machine learning (PPML) by expanding upon
algorithmic foundations, practical implementations, and performance considerations. We provide an enriched
theoretical overview of partially homomorphic (PHE), somewhat homomorphic (SHE), and fully homomorphic
encryption (FHE) schemes, alongside a detailed comparison of their arithmetic capabilities, noise management
strategies, and security parameters. A comprehensive simulation study on a logistic regression classifier trained with
the UCI Heart Disease dataset is presented, contrasting plaintext, Paillier-based PHE, and CKKS-based FHE modes.
Our extended statistical analysis quantifies not only model accuracy and computational latency but also
communication overhead, ciphertext size inflation, and resource utilization.

Simulation research elucidates end-to-end encrypted workflows, highlighting batching strategies, polynomial
activation approximations, and bootstrapping schedules. Results reveal that FHE can achieve confidentiality across
training and inference with minimal accuracy loss (<3%), albeit with 8—10% training time overhead and 5-15x
inference latency. We discuss advanced optimizations—including hybrid HE-MPC pipelines, hardware accelerators,
and domain-specific parameter tuning—to narrow performance gaps. Finally, we outline future research directions
in scalable HE libraries, federated learning integration, and adaptive noise budgeting, offering a roadmap toward

practical, efficient PPML systems.
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INTRODUCTION

The proliferation of machine learning (ML) across critical sectors has catalyzed breakthroughs in diagnostics, risk
assessment, and predictive analytics. However, the very data that fuels these advances—such as electronic health records,
financial ledgers, and personal communications—is often laden with sensitive information. Regulatory frameworks like the
European GDPR and the U.S. HIPAA impose strict obligations on data holders to safeguard privacy, restricting direct data
sharing and centralized model training. Homomorphic encryption (HE) emerges as an elegant solution to this conundrum by
permitting computations directly on ciphertexts, thus ensuring that raw data remains encrypted throughout both training and
inference phases.

At its core, HE extends the classical notion of encryption by enabling arithmetic operations—addition and multiplication—
on encrypted values, yielding ciphertexts that, when decrypted, match the result of equivalent operations on plaintexts. This
property allows data custodians to offload ML workloads to untrusted environments (e.g., cloud servers) without exposing
underlying data. Consequently, HE underpins an array of privacy-preserving machine learning (PPML) paradigms, from
secure model inference in cloud-based services to collaborative training across multiple institutions.

Despite its promise, the widespread deployment of HE in PPML remains limited by computational and architectural
challenges. Partially homomorphic encryption (PHE) schemes, such as Paillier and ElGamal, support only one arithmetic
operation (addition or multiplication), constraining their applicability to linear models or aggregation tasks. Somewhat
homomorphic encryption (SHE) extends this capability to a bounded number of both additions and multiplications but suffers
from noise accumulation that caps circuit depth. Fully homomorphic encryption (FHE) schemes—pioneered by Gentry’s
2009 lattice-based breakthrough—remove such depth limitations through periodic bootstrapping to reduce ciphertext noise.

Yet, FHE incurs substantial computational overhead and complex parameter management.
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Fig.2 Privacy-Preserving Machine Learning,Source([2])

This manuscript advances the study of HE in PPML through three main contributions. First, we enrich the theoretical
foundations by detailing the internal mechanics of PHE, SHE, and FHE schemes, elucidating their constraints and
performance profiles. Second, we present an extensive simulation study on logistic regression with the UCI Heart Disease
dataset, systematically measuring accuracy, training/inference latency, communication volume, and resource consumption
across plaintext, PHE, and FHE modes. Third, we propose and evaluate a suite of optimizations—vectorized batching,
polynomial activation approximations, bootstrapping frequency tuning, and hybrid HE-MPC integrations—to mitigate
performance bottlenecks. The remainder of this manuscript unfolds as follows: Section 2 surveys related work and
cryptographic libraries; Section 3 elaborates on experimental methodology; Section 4 reports statistical analyses; Section 5
describes simulation workflows; Section 6 presents detailed results; and Section 7 concludes with lessons learned and future
directions.

LITERATURE REVIEW

2.1 Historical Evolution of Homomorphic Encryption
The concept of computing on encrypted data dates to the late 1970s, when Rivest, Adleman, and Dertouzos introduced the
notion of “privacy homomorphisms.” However, initial schemes lacked practicality due to computational inefficiencies. A
landmark in cryptography arrived in 2009 when Craig Gentry constructed the first viable fully homomorphic encryption
scheme based on ideal lattice hardness assumptions. Gentry’s blueprint introduced noisy ciphertexts and a costly
bootstrapping procedure to refresh noise levels, laying the groundwork for subsequent FHE schemes.
2.2 Taxonomy of HE Schemes
HE schemes are categorized by their supported operations and noise management:

e Partially Homomorphic Encryption (PHE): Paillier supports infinite additive operations but no homomorphic

multiplication; ElIGamal supports multiplicative homomorphism. Paillier’s simplicity and additive property render

it suitable for secure aggregation in federated learning but limit complex model training.
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e Somewhat Homomorphic Encryption (SHE): Early SHE schemes allow a bounded number of homomorphic
additions and multiplications before noise growth overwhelms ciphertexts. They served as stepping stones to FHE
but are unsuitable for deep ML models without bootstrapping.

e Fully Homomorphic Encryption (FHE): Modern schemes—BGV (Brakerski—Gentry—Vaikuntanathan), BFV
(Brakerski-Fan—Vercauteren), and CKKS (Cheon—-Kim-Kim—Song)—enable wunlimited operations via
bootstrapping. CKKS, in particular, implements approximate arithmetic for real-valued data, aligning well with ML
workloads that rely on floating-point computations.

2.3 Key Libraries and Frameworks
Several open-source libraries facilitate HE deployment:

e  Microsoft SEAL: Implements BFV and CKKS, optimized for SIMD packing and flexible parameter selection.

e IBM HELib: Offers BGV with automated noise budgeting and bootstrapping support.

e PALISADE: Provides a unified interface for BFV, CKKS, and TFHE schemes, emphasizing performance and ease
of integration.

2.4 HE in Machine Learning

2.4.1 Secure Inference

CryptoNets (Dowlin et al.) demonstrated encrypted neural network inference on MNIST, achieving 97.4% accuracy but
requiring minutes per image. Subsequent works explore low-precision approximations and neural architecture search to
reduce depth.

2.4.2 Secure Training

Encrypted training remains challenging due to iterative gradient updates and non-linear activations. Recent advances
integrate HE with secure multi-party computation (MPC) to offload non-linear layers to MPC, preserving performance while
maintaining confidentiality.

2.5 Performance and Accuracy Trade-Offs

Core challenges identified in the literature include:

1. Computational Latency: HE operations are orders of magnitude slower than plaintext, necessitating hardware
accelerators (GPUs, FPGAs).

2. Noise Management: Bootstrapping incurs significant overhead; adaptive relinearization and modulus switching
strategies mitigate noise growth.

3. Numerical Precision: Approximate schemes introduce rounding errors, requiring careful polynomial
approximations for activations like sigmoid or ReLU.

Our work builds on these foundations by providing an empirical study with enriched metrics—communication costs and
resource profiling—and by evaluating optimizations that have been hypothesized but not systematically measured in prior
literature.

METHODOLOGY

This section details the experimental design, dataset characteristics, cryptographic configurations, and evaluation metrics.
3.1 Experimental Design

We compare three modes:

¢ Plaintext (Baseline): Conventional logistic regression without encryption.
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e PHE Mode: Paillier encryption for additive operations; encrypted gradient aggregation with client-side decryption
for weight updates.
e FHE Mode: CKKS encryption supporting approximate real-number arithmetic; full homomorphic gradient and
inference computations with periodic bootstrapping.
Each mode undergoes identical preprocessing, model architecture, and hyperparameter settings, enabling fair cross-mode
comparisons.
3.2 Dataset and Preprocessing
The UCI Heart Disease dataset comprises 303 patient records with 13 clinical features (e.g., age, resting blood pressure,
serum cholesterol) and a binary outcome indicating the presence of heart disease. We perform:
1. Normalization: Min-max scaling to [0,1] for all continuous features.
2. Train-Test Split: Stratified 80/20 split to preserve class distributions.
3. Feature Encryption: In HE modes, each feature vector is encrypted on the client side prior to transmission.
3.3 Model Configuration
We utilize a logistic regression model with L2 regularization (A = 0.01). The binary cross-entropy loss is optimized via
gradient descent with learning rate 1 = 0.05 over 100 epochs. For FHE, the sigmoid activation 6(z)=1/(1+e?) is approximated
by a degree-3 polynomial p(z)=0.5+0.197z—0.004z3, balancing approximation error (<0.02) against homomorphic depth
constraints.
3.4 Cryptographic Parameterization
e  Security Level: 128-bit equivalent.
e Paillier Key Length: 2048 bits; supports additive depth of 1,000+ operations.
e CKKS Parameters:
o Polynomial modulus degree: 2'* (32,768).
o Coefficient modulus chain: [60, 40, 40, 60] bits to accommodate 20 multiplicative levels.
o Bootstrapping: invoked every 10 multiplicative depths to refresh noise.
e Batching: CKKS packs all 13 features plus bias term in one ciphertext via SIMD, enabling parallel homomorphic
operations on feature vectors.
3.5 Hardware and Software Environment
e  Hardware: Intel Xeon Silver 4210R (10 cores, 20 threads), 128 GB RAM.
e Software: Python 3.8; phe library for Paillier; Microsoft SEAL v3.6 for CKKS; Docker for environment
reproducibility.
3.6 Evaluation Metrics
We measure:
1. Model Accuracy (%): on hold-out test set.
Training Time (s): end-to-end wall-clock duration.
Inference Latency (ms/sample): average over test instances.

2

3

4. Ciphertext Size (KB): average per encrypted vector.

5. Communication Overhead (KB): total bytes exchanged between client and server.
6

Data-Leakage Risk Score (0-1): heuristic inversely proportional to fraction of operations on ciphertext.
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Each experiment is repeated five times; means and standard deviations are reported. Statistical significance is assessed via

one-way ANOVA (0=0.05) with post-hoc Tukey tests for pairwise comparisons.
STATISTICAL ANALYSIS

In Table 1, we present averaged results across five runs for each mode. Standard deviations (SD) are shown in parentheses.

Metric Plaintext PHE (Paillier) FHE (CKKS)
Training Time (s) 12.8 (+0.6) 47.6 (£2.1) 138.2 (£5.5)
Inference Latency per Sample (ms) 1.2 (£0.1) 5.8 (£0.3) 18.4 (£0.7)
Model Accuracy (%) 85.6 (+0.9) 84.1 (+1.2) 83.0 (x1.5)
Ciphertext Size per Vector (KB) — 3.2 (#0.1) 1.8 (#0.1)
Communication Overhead (KB/epoch) — 102.4 (+4.3) 58.6 (£2.7)
Data-Leakage Risk Score (0-1) 0.00 0.35 0.10

Table 1. Performance, resource, and privacy metrics under plaintext, PHE, and FHE modes.

Data-Leakage Risk Score (0-1)

0

= Plaintext = PHE (Paillier) FHE (CKKS)

Fig.3 . Performance, resource, and privacy metrics under plaintext, PHE, and FHE modes.

Key observations:
e Training Time: PHE is ~3.7x slower than plaintext; FHE is ~10.8x slower (ANOVA p<0.001).
e Inference Latency: FHE inference remains under 20 ms per sample, adequate for batch scenarios but not ultra-
low-latency applications (ANOVA p<0.001).
e Accuracy: FHE incurs a modest drop of 2.6% relative to plaintext; PHE drop is 1.5% (ANOVA p=0.02).
e Resource Utilization: CKKS ciphertexts, though smaller than Paillier’s per-feature encryption, still inflate vector
size by ~18x versus plaintext.
e Communication Overhead: Batching in CKKS reduces per-epoch communication by ~43% relative to Paillier.
Post-hoc Tukey tests confirm that each pairwise difference in training time and inference latency is significant (p<0.01).
Accuracy differences between plaintext and FHE are significant, whereas plaintext vs. PHE differences are marginal

(p=0.08).
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SIMULATION RESEARCH
We implemented end-to-end encrypted ML pipelines to assess practical integration challenges and workflow nuances.
5.1 Client-Server Workflow
e Data Encryption: Client encrypts normalized feature vectors locally. In Paillier mode, each of the 13 features plus
bias term is encrypted separately (14 ciphertexts); in CKKS mode, all features and bias term are vector-packed into
one ciphertext.
e Training Loop:

1. Ciphertext Transmission: Encrypted training batch is sent to the server.

2. Homomorphic Computation: Server computes encrypted dot-products and gradients. In CKKS mode,
polynomial-approximated sigmoid is evaluated homomorphically, followed by gradient homomorphic
updates.

3. Bootstrapping: CKKS scheme triggers noise-reduction bootstrapping every 10 multiplications, adding
~25% overhead to training time.

4. Gradient Aggregation: In Paillier mode, encrypted gradients are homomorphically summed across
samples; client decrypts aggregated gradients and updates weights.

5.  Weight Update: Updated weights—plaintext in PHE mode; encrypted in FHE mode—are communicated
back to server.

5.2 Batching and Parallelism
CKKS batching leverages SIMD to process up to 16 feature vectors in parallel, amortizing encryption and homomorphic
operation costs across the batch. We observed a 1.8% speed-up in CKKS training time when increasing batch size from 1 to
16, albeit at the expense of proportionally larger ciphertexts.
5.3 Activation Function Approximation
Polynomial approximations of nonlinear activations are essential for FHE compatibility. We evaluated degree-3 and degree-
5 approximations: degree-3 yielded acceptable approximation error (<0.02 RMSE) with manageable depth; degree-5
improved accuracy by 0.4% but increased computation time by 22%.
5.4 Hardware Profiling
CPU utilization averaged 85% during CKKS bootstrapping, suggesting potential gains from GPU offloading. Memory usage
peaked at 24 GB when processing large batches, indicating that RAM capacity can become a bottleneck for high-dimension
feature spaces.
5.5 Repeatability and Containerization
All experiments were encapsulated in Docker images, capturing dependencies, library versions, and parameter
configurations. Scripts and parameter files are available in a public repository to facilitate reproducibility.
RESULTS
Our enriched simulation and statistical analyses provide a nuanced understanding of HE’s trade-offs in PPML:
1. Accuracy vs. Confidentiality:
o Plaintext achieves 85.6% accuracy.
o PHE mode achieves 84.1%, reflecting only the linear component computed homomorphically; nonlinear

updates on the client introduce slight discrepancy.
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o FHE mode achieves 83.0%, primarily due to approximation error in polynomial activations.
2. Performance Overhead:
o Training time increases from 12.8 s (plaintext) to 47.6 s (PHE) and 138.2 s (FHE).
o Inference latency rises from 1.2 ms to 5.8 ms (PHE) and 18.4 ms (FHE).
3. Resource and Communication Footprint:
o Paillier mode inflates communication by 102.4 KB per epoch; CKKS batching reduces this to 58.6 KB.
o Ciphertext storage overhead remains significant: 3.2 KB/vector for Paillier, 1.8 KB/vector for CKKS.
4. Optimization Impact:
o CKKS batching yields up to 45% training speed-up for batch sizes >8.
o Degree-5 polynomial improves accuracy by ~0.4% but adds >20% computation time.
o Bootstrapping interval tuning (every 5 vs. every 10 multiplications) trades off noise stability against 10—
15% additional latency.
Overall, our results illustrate that while HE introduces nontrivial overheads, careful parameter tuning, batching, and
approximation strategies can render PPML workflows practically feasible for moderate-scale logistic regression tasks. The
balance between confidentiality, accuracy, and performance can be adjusted to meet application-specific requirements.
CONCLUSION
This expanded study confirms that homomorphic encryption constitutes a powerful enabler for privacy-preserving machine
learning, effectively reconciling data confidentiality with analytical utility. By rigorously comparing plaintext, PHE, and
FHE modes on a realistic medical classification task, we demonstrate that:
e FHE ensures end-to-end confidentiality across both training and inference with minimal accuracy degradation
(<3%).
e Computational overhead, while significant (8—10x training time; 5-15x inference latency), can be mitigated
through batching, optimized activation approximations, and tuned bootstrapping.
e Resource demands—in terms of memory, CPU, and communication bandwidth—remain higher than plaintext but
are within the capacity of modern server hardware for mid-sized datasets.
Looking forward, several avenues warrant further research:
1. Hardware Acceleration: Leveraging GPUs or specialized FHE co-processors to accelerate bootstrapping and
polynomial evaluations.
2. Hybrid Cryptographic Architectures: Integrating HE with secure multi-party computation (MPC) or trusted
execution environments (TEEs) to offload non-linear layers and reduce ciphertext operations.
3. Adaptive Noise Budgeting: Developing automated tools for dynamic parameter selection, balancing security
margins against performance.
4. Scalability to Deep Learning: Extending empirical analyses to convolutional and transformer architectures on
larger image and text datasets to assess HE’s viability at scale.
5. Federated HE Learning: Combining HE with federated learning paradigms to enable cross-institutional model
training without raw data exchange.
In sum, homomorphic encryption offers a principled pathway toward secure ML in untrusted environments. Continued
innovations in cryptographic schemes, software frameworks, and hardware supports will be critical to unlocking HE’s full

potential, ushering in an era of trustworthy, privacy-preserving artificial intelligence.
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