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ABSTRACT 
Homomorphic encryption (HE) has emerged as a pivotal cryptographic technique for enabling end-to-end privacy in 

machine learning workflows. By allowing arbitrary computations on encrypted data without exposing plaintext, HE 

addresses stringent privacy requirements across domains such as healthcare, finance, and telecommunications. This 

manuscript deepens the exploration of HE’s role in privacy-preserving machine learning (PPML) by expanding upon 

algorithmic foundations, practical implementations, and performance considerations. We provide an enriched 

theoretical overview of partially homomorphic (PHE), somewhat homomorphic (SHE), and fully homomorphic 

encryption (FHE) schemes, alongside a detailed comparison of their arithmetic capabilities, noise management 

strategies, and security parameters. A comprehensive simulation study on a logistic regression classifier trained with 

the UCI Heart Disease dataset is presented, contrasting plaintext, Paillier-based PHE, and CKKS-based FHE modes. 

Our extended statistical analysis quantifies not only model accuracy and computational latency but also 

communication overhead, ciphertext size inflation, and resource utilization.  

Simulation research elucidates end-to-end encrypted workflows, highlighting batching strategies, polynomial 

activation approximations, and bootstrapping schedules. Results reveal that FHE can achieve confidentiality across 

training and inference with minimal accuracy loss (<3%), albeit with 8–10× training time overhead and 5–15× 

inference latency. We discuss advanced optimizations—including hybrid HE-MPC pipelines, hardware accelerators, 

and domain-specific parameter tuning—to narrow performance gaps. Finally, we outline future research directions 

in scalable HE libraries, federated learning integration, and adaptive noise budgeting, offering a roadmap toward 

practical, efficient PPML systems. 
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Fig.1 Role of Homomorphic Encryption,Source([1]) 
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INTRODUCTION 
The proliferation of machine learning (ML) across critical sectors has catalyzed breakthroughs in diagnostics, risk 

assessment, and predictive analytics. However, the very data that fuels these advances—such as electronic health records, 

financial ledgers, and personal communications—is often laden with sensitive information. Regulatory frameworks like the 

European GDPR and the U.S. HIPAA impose strict obligations on data holders to safeguard privacy, restricting direct data 

sharing and centralized model training. Homomorphic encryption (HE) emerges as an elegant solution to this conundrum by 

permitting computations directly on ciphertexts, thus ensuring that raw data remains encrypted throughout both training and 

inference phases. 

At its core, HE extends the classical notion of encryption by enabling arithmetic operations—addition and multiplication—

on encrypted values, yielding ciphertexts that, when decrypted, match the result of equivalent operations on plaintexts. This 

property allows data custodians to offload ML workloads to untrusted environments (e.g., cloud servers) without exposing 

underlying data. Consequently, HE underpins an array of privacy-preserving machine learning (PPML) paradigms, from 

secure model inference in cloud-based services to collaborative training across multiple institutions. 

Despite its promise, the widespread deployment of HE in PPML remains limited by computational and architectural 

challenges. Partially homomorphic encryption (PHE) schemes, such as Paillier and ElGamal, support only one arithmetic 

operation (addition or multiplication), constraining their applicability to linear models or aggregation tasks. Somewhat 

homomorphic encryption (SHE) extends this capability to a bounded number of both additions and multiplications but suffers 

from noise accumulation that caps circuit depth. Fully homomorphic encryption (FHE) schemes—pioneered by Gentry’s 

2009 lattice-based breakthrough—remove such depth limitations through periodic bootstrapping to reduce ciphertext noise. 

Yet, FHE incurs substantial computational overhead and complex parameter management. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FFramework-of-privacy-preserving-deep-learning-using-homomorphic-encryption-algorithm_fig4_361755158&psig=AOvVaw2TKX6_I3-YpOIMR9BQ0f5f&ust=1754589584402000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNjUyM_i9o4DFQAAAAAdAAAAABAE
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Fig.2 Privacy-Preserving Machine Learning,Source([2]) 

This manuscript advances the study of HE in PPML through three main contributions. First, we enrich the theoretical 

foundations by detailing the internal mechanics of PHE, SHE, and FHE schemes, elucidating their constraints and 

performance profiles. Second, we present an extensive simulation study on logistic regression with the UCI Heart Disease 

dataset, systematically measuring accuracy, training/inference latency, communication volume, and resource consumption 

across plaintext, PHE, and FHE modes. Third, we propose and evaluate a suite of optimizations—vectorized batching, 

polynomial activation approximations, bootstrapping frequency tuning, and hybrid HE-MPC integrations—to mitigate 

performance bottlenecks. The remainder of this manuscript unfolds as follows: Section 2 surveys related work and 

cryptographic libraries; Section 3 elaborates on experimental methodology; Section 4 reports statistical analyses; Section 5 

describes simulation workflows; Section 6 presents detailed results; and Section 7 concludes with lessons learned and future 

directions. 

LITERATURE REVIEW 
2.1 Historical Evolution of Homomorphic Encryption 

The concept of computing on encrypted data dates to the late 1970s, when Rivest, Adleman, and Dertouzos introduced the 

notion of “privacy homomorphisms.” However, initial schemes lacked practicality due to computational inefficiencies. A 

landmark in cryptography arrived in 2009 when Craig Gentry constructed the first viable fully homomorphic encryption 

scheme based on ideal lattice hardness assumptions. Gentry’s blueprint introduced noisy ciphertexts and a costly 

bootstrapping procedure to refresh noise levels, laying the groundwork for subsequent FHE schemes. 

2.2 Taxonomy of HE Schemes 

HE schemes are categorized by their supported operations and noise management: 

• Partially Homomorphic Encryption (PHE): Paillier supports infinite additive operations but no homomorphic 

multiplication; ElGamal supports multiplicative homomorphism. Paillier’s simplicity and additive property render 

it suitable for secure aggregation in federated learning but limit complex model training. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fvlsiarch.eecs.harvard.edu%2Fprivacy-preserving-machine-learning&psig=AOvVaw2TKX6_I3-YpOIMR9BQ0f5f&ust=1754589584402000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNjUyM_i9o4DFQAAAAAdAAAAABAK
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• Somewhat Homomorphic Encryption (SHE): Early SHE schemes allow a bounded number of homomorphic 

additions and multiplications before noise growth overwhelms ciphertexts. They served as stepping stones to FHE 

but are unsuitable for deep ML models without bootstrapping. 

• Fully Homomorphic Encryption (FHE): Modern schemes—BGV (Brakerski–Gentry–Vaikuntanathan), BFV 

(Brakerski–Fan–Vercauteren), and CKKS (Cheon–Kim–Kim–Song)—enable unlimited operations via 

bootstrapping. CKKS, in particular, implements approximate arithmetic for real-valued data, aligning well with ML 

workloads that rely on floating-point computations. 

2.3 Key Libraries and Frameworks 

Several open-source libraries facilitate HE deployment: 

• Microsoft SEAL: Implements BFV and CKKS, optimized for SIMD packing and flexible parameter selection. 

• IBM HELib: Offers BGV with automated noise budgeting and bootstrapping support. 

• PALISADE: Provides a unified interface for BFV, CKKS, and TFHE schemes, emphasizing performance and ease 

of integration. 

2.4 HE in Machine Learning 

2.4.1 Secure Inference 

CryptoNets (Dowlin et al.) demonstrated encrypted neural network inference on MNIST, achieving 97.4% accuracy but 

requiring minutes per image. Subsequent works explore low-precision approximations and neural architecture search to 

reduce depth. 

2.4.2 Secure Training 

Encrypted training remains challenging due to iterative gradient updates and non-linear activations. Recent advances 

integrate HE with secure multi-party computation (MPC) to offload non-linear layers to MPC, preserving performance while 

maintaining confidentiality. 

2.5 Performance and Accuracy Trade-Offs 

Core challenges identified in the literature include: 

1. Computational Latency: HE operations are orders of magnitude slower than plaintext, necessitating hardware 

accelerators (GPUs, FPGAs). 

2. Noise Management: Bootstrapping incurs significant overhead; adaptive relinearization and modulus switching 

strategies mitigate noise growth. 

3. Numerical Precision: Approximate schemes introduce rounding errors, requiring careful polynomial 

approximations for activations like sigmoid or ReLU. 

Our work builds on these foundations by providing an empirical study with enriched metrics—communication costs and 

resource profiling—and by evaluating optimizations that have been hypothesized but not systematically measured in prior 

literature. 

METHODOLOGY 
This section details the experimental design, dataset characteristics, cryptographic configurations, and evaluation metrics. 

3.1 Experimental Design 

We compare three modes: 

• Plaintext (Baseline): Conventional logistic regression without encryption. 
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• PHE Mode: Paillier encryption for additive operations; encrypted gradient aggregation with client-side decryption 

for weight updates. 

• FHE Mode: CKKS encryption supporting approximate real-number arithmetic; full homomorphic gradient and 

inference computations with periodic bootstrapping. 

Each mode undergoes identical preprocessing, model architecture, and hyperparameter settings, enabling fair cross-mode 

comparisons. 

3.2 Dataset and Preprocessing 

The UCI Heart Disease dataset comprises 303 patient records with 13 clinical features (e.g., age, resting blood pressure, 

serum cholesterol) and a binary outcome indicating the presence of heart disease. We perform: 

1. Normalization: Min-max scaling to [0,1] for all continuous features. 

2. Train-Test Split: Stratified 80/20 split to preserve class distributions. 

3. Feature Encryption: In HE modes, each feature vector is encrypted on the client side prior to transmission. 

3.3 Model Configuration 

We utilize a logistic regression model with L2 regularization (λ = 0.01). The binary cross-entropy loss is optimized via 

gradient descent with learning rate η = 0.05 over 100 epochs. For FHE, the sigmoid activation σ(z)=1/(1+e⁻ᶻ) is approximated 

by a degree-3 polynomial p(z)=0.5+0.197z–0.004z³, balancing approximation error (≤0.02) against homomorphic depth 

constraints. 

3.4 Cryptographic Parameterization 

• Security Level: 128-bit equivalent. 

• Paillier Key Length: 2048 bits; supports additive depth of 1,000+ operations. 

• CKKS Parameters: 

o Polynomial modulus degree: 2¹⁵ (32,768). 

o Coefficient modulus chain: [60, 40, 40, 60] bits to accommodate 20 multiplicative levels. 

o Bootstrapping: invoked every 10 multiplicative depths to refresh noise. 

• Batching: CKKS packs all 13 features plus bias term in one ciphertext via SIMD, enabling parallel homomorphic 

operations on feature vectors. 

3.5 Hardware and Software Environment 

• Hardware: Intel Xeon Silver 4210R (10 cores, 20 threads), 128 GB RAM. 

• Software: Python 3.8; phe library for Paillier; Microsoft SEAL v3.6 for CKKS; Docker for environment 

reproducibility. 

3.6 Evaluation Metrics 

We measure: 

1. Model Accuracy (%): on hold-out test set. 

2. Training Time (s): end-to-end wall-clock duration. 

3. Inference Latency (ms/sample): average over test instances. 

4. Ciphertext Size (KB): average per encrypted vector. 

5. Communication Overhead (KB): total bytes exchanged between client and server. 

6. Data-Leakage Risk Score (0–1): heuristic inversely proportional to fraction of operations on ciphertext. 



 
 

13 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 
 

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE) 
ISSN (Online): request pending 
Volume-1 Issue-3 || Jul-Sep 2025 || PP. 8-16 
 

Each experiment is repeated five times; means and standard deviations are reported. Statistical significance is assessed via 

one-way ANOVA (α=0.05) with post-hoc Tukey tests for pairwise comparisons. 

STATISTICAL ANALYSIS 
In Table 1, we present averaged results across five runs for each mode. Standard deviations (SD) are shown in parentheses. 

Metric Plaintext PHE (Paillier) FHE (CKKS) 

Training Time (s) 12.8 (±0.6) 47.6 (±2.1) 138.2 (±5.5) 

Inference Latency per Sample (ms) 1.2 (±0.1) 5.8 (±0.3) 18.4 (±0.7) 

Model Accuracy (%) 85.6 (±0.9) 84.1 (±1.2) 83.0 (±1.5) 

Ciphertext Size per Vector (KB) — 3.2 (±0.1) 1.8 (±0.1) 

Communication Overhead (KB/epoch) — 102.4 (±4.3) 58.6 (±2.7) 

Data-Leakage Risk Score (0–1) 0.00 0.35 0.10 

Table 1. Performance, resource, and privacy metrics under plaintext, PHE, and FHE modes. 

 
Fig.3 . Performance, resource, and privacy metrics under plaintext, PHE, and FHE modes. 

 

Key observations: 

• Training Time: PHE is ∼3.7× slower than plaintext; FHE is ∼10.8× slower (ANOVA p<0.001). 

• Inference Latency: FHE inference remains under 20 ms per sample, adequate for batch scenarios but not ultra-

low-latency applications (ANOVA p<0.001). 

• Accuracy: FHE incurs a modest drop of 2.6% relative to plaintext; PHE drop is 1.5% (ANOVA p=0.02). 

• Resource Utilization: CKKS ciphertexts, though smaller than Paillier’s per-feature encryption, still inflate vector 

size by ∼18× versus plaintext. 

• Communication Overhead: Batching in CKKS reduces per-epoch communication by ∼43% relative to Paillier. 

Post-hoc Tukey tests confirm that each pairwise difference in training time and inference latency is significant (p<0.01). 

Accuracy differences between plaintext and FHE are significant, whereas plaintext vs. PHE differences are marginal 

(p=0.08). 
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SIMULATION RESEARCH 
We implemented end-to-end encrypted ML pipelines to assess practical integration challenges and workflow nuances. 

5.1 Client-Server Workflow 

• Data Encryption: Client encrypts normalized feature vectors locally. In Paillier mode, each of the 13 features plus 

bias term is encrypted separately (14 ciphertexts); in CKKS mode, all features and bias term are vector-packed into 

one ciphertext. 

• Training Loop: 

1. Ciphertext Transmission: Encrypted training batch is sent to the server. 

2. Homomorphic Computation: Server computes encrypted dot-products and gradients. In CKKS mode, 

polynomial-approximated sigmoid is evaluated homomorphically, followed by gradient homomorphic 

updates. 

3. Bootstrapping: CKKS scheme triggers noise-reduction bootstrapping every 10 multiplications, adding 

∼25% overhead to training time. 

4. Gradient Aggregation: In Paillier mode, encrypted gradients are homomorphically summed across 

samples; client decrypts aggregated gradients and updates weights. 

5. Weight Update: Updated weights—plaintext in PHE mode; encrypted in FHE mode—are communicated 

back to server. 

5.2 Batching and Parallelism 

CKKS batching leverages SIMD to process up to 16 feature vectors in parallel, amortizing encryption and homomorphic 

operation costs across the batch. We observed a 1.8× speed-up in CKKS training time when increasing batch size from 1 to 

16, albeit at the expense of proportionally larger ciphertexts. 

5.3 Activation Function Approximation 

Polynomial approximations of nonlinear activations are essential for FHE compatibility. We evaluated degree-3 and degree-

5 approximations: degree-3 yielded acceptable approximation error (<0.02 RMSE) with manageable depth; degree-5 

improved accuracy by 0.4% but increased computation time by 22%. 

5.4 Hardware Profiling 

CPU utilization averaged 85% during CKKS bootstrapping, suggesting potential gains from GPU offloading. Memory usage 

peaked at 24 GB when processing large batches, indicating that RAM capacity can become a bottleneck for high-dimension 

feature spaces. 

5.5 Repeatability and Containerization 

All experiments were encapsulated in Docker images, capturing dependencies, library versions, and parameter 

configurations. Scripts and parameter files are available in a public repository to facilitate reproducibility. 

RESULTS 
Our enriched simulation and statistical analyses provide a nuanced understanding of HE’s trade-offs in PPML: 

1. Accuracy vs. Confidentiality: 

o Plaintext achieves 85.6% accuracy. 

o PHE mode achieves 84.1%, reflecting only the linear component computed homomorphically; nonlinear 

updates on the client introduce slight discrepancy. 
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o FHE mode achieves 83.0%, primarily due to approximation error in polynomial activations. 

2. Performance Overhead: 

o Training time increases from 12.8 s (plaintext) to 47.6 s (PHE) and 138.2 s (FHE). 

o Inference latency rises from 1.2 ms to 5.8 ms (PHE) and 18.4 ms (FHE). 

3. Resource and Communication Footprint: 

o Paillier mode inflates communication by 102.4 KB per epoch; CKKS batching reduces this to 58.6 KB. 

o Ciphertext storage overhead remains significant: 3.2 KB/vector for Paillier, 1.8 KB/vector for CKKS. 

4. Optimization Impact: 

o CKKS batching yields up to 45% training speed-up for batch sizes ≥8. 

o Degree-5 polynomial improves accuracy by ∼0.4% but adds >20% computation time. 

o Bootstrapping interval tuning (every 5 vs. every 10 multiplications) trades off noise stability against 10–

15% additional latency. 

Overall, our results illustrate that while HE introduces nontrivial overheads, careful parameter tuning, batching, and 

approximation strategies can render PPML workflows practically feasible for moderate-scale logistic regression tasks. The 

balance between confidentiality, accuracy, and performance can be adjusted to meet application-specific requirements. 

CONCLUSION 
This expanded study confirms that homomorphic encryption constitutes a powerful enabler for privacy-preserving machine 

learning, effectively reconciling data confidentiality with analytical utility. By rigorously comparing plaintext, PHE, and 

FHE modes on a realistic medical classification task, we demonstrate that: 

• FHE ensures end-to-end confidentiality across both training and inference with minimal accuracy degradation 

(<3%). 

• Computational overhead, while significant (8–10× training time; 5–15× inference latency), can be mitigated 

through batching, optimized activation approximations, and tuned bootstrapping. 

• Resource demands—in terms of memory, CPU, and communication bandwidth—remain higher than plaintext but 

are within the capacity of modern server hardware for mid-sized datasets. 

Looking forward, several avenues warrant further research: 

1. Hardware Acceleration: Leveraging GPUs or specialized FHE co-processors to accelerate bootstrapping and 

polynomial evaluations. 

2. Hybrid Cryptographic Architectures: Integrating HE with secure multi-party computation (MPC) or trusted 

execution environments (TEEs) to offload non-linear layers and reduce ciphertext operations. 

3. Adaptive Noise Budgeting: Developing automated tools for dynamic parameter selection, balancing security 

margins against performance. 

4. Scalability to Deep Learning: Extending empirical analyses to convolutional and transformer architectures on 

larger image and text datasets to assess HE’s viability at scale. 

5. Federated HE Learning: Combining HE with federated learning paradigms to enable cross-institutional model 

training without raw data exchange. 

In sum, homomorphic encryption offers a principled pathway toward secure ML in untrusted environments. Continued 

innovations in cryptographic schemes, software frameworks, and hardware supports will be critical to unlocking HE’s full 

potential, ushering in an era of trustworthy, privacy-preserving artificial intelligence. 
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