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ABSTRACT

The contemporary cybersecurity landscape is characterized by an incessant arms race between malicious actors
designing increasingly sophisticated malware and defenders seeking to detect and mitigate these threats effectively.
Traditional signature-based antivirus solutions, which rely on known patterns and static characteristics, are rendered
largely impotent against novel, polymorphic, and metamorphic malware that can adapt their code to evade detection.
In response, the industry has witnessed a paradigm shift toward behavior-based detection systems empowered by
artificial intelligence (AI) and machine learning (ML). This manuscript delves into an Al-driven framework for
dynamic malware behavior classification and real-time detection, detailing the processes of comprehensive feature
extraction, rigorous statistical analysis, classifier training, and simulated deployment in enterprise environments.

‘We curated a diverse dataset comprising 5,000 benign and 5,000 malicious Windows PE samples, executing each in a
controlled sandbox environment to capture API call sequences, network traffic metrics, file system interactions, and

registry modifications over a five-minute runtime.
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Fig. 1 Malware Behavior Classification,Source([1])

Features were aggregated into temporal and frequency-based descriptors, yielding a feature vector of 120 attributes
per sample. Dimensionality reduction via Principal Component Analysis (PCA) preceded supervised learning using
Random Forest (RF), Support Vector Machine (SVM), and Deep Neural Network (DNN) models. The RF classifier
demonstrated superior performance with 97.8% accuracy, 96.5% precision, and 98.1% recall under four-fold cross-
validation. Statistical testing (two-sample t-tests, Mann—Whitney U) corroborated the discriminative power of key
dynamic features (p < 0.001).

A simulation testbed, implemented in NS-3, emulated an enterprise network of 200 hosts engaging in regular
productivity traffic interspersed with stealth and burst malware injection scenarios. The RF-based detection pipeline,

deployed as a RESTful microservice, achieved an average detection latency of 120 ms, maintained CPU utilization
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under 65% during peak loads, and sustained a 99% detection rate with zero false positives in stealth mode. The
proposed system thus offers a robust, adaptive solution for cybersecurity operations centers (SOCs) and Security
Information and Event Management (SIEM) platforms, capable of countering emerging threats with minimal human
intervention.

Keywords: AI-driven malware behavior classification and detection systems machine learning dynamic analysis real-
time detection

INTRODUCTION

The exponential growth of malware variants, amplified by sophisticated evasion tactics and the proliferation of Internet of
Things (IoT) devices, constitutes a formidable challenge for cybersecurity practitioners. In 2024 alone, cybersecurity vendors
detected over 25 million new malware samples worldwide, many employing polymorphism—code transformation
techniques that preserve functionality while altering binary signatures—to thwart signature-based scanners. The limitations
of reactive, signature-dependent detection underscore the need for proactive, behavior-based mechanisms that analyze

runtime artifacts to infer maliciousness.
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Fig.2 AI-Driven Malware Behavior,Source([2])
Behavioral analysis observes how executables interact with their environment: sequences of system calls, patterns of network
communication, unauthorized file manipulations, and anomalous registry operations. Such dynamic features are inherently
more resilient to code obfuscation, packing, and encryption. Coupled with Al and ML, behavior-based detection can learn
complex patterns and correlations across high-dimensional telemetry, enabling generalization to unseen threats.
This manuscript presents a comprehensive Al-driven framework for malware behavior classification and detection,

structured around four core pillars:

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)


https://www.google.com/url?sa=i&url=https%3A%2F%2Fmaddevs.io%2Fblog%2Fartificial-intelligence-in-cybersecurity%2F&psig=AOvVaw1XLV9Ls0ttzzq7Y6Sh0r6S&ust=1754592429677000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNC8jcDt9o4DFQAAAAAdAAAAABAT

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 16-24

1. Dynamic Feature Extraction: Instrumentation of sandboxed Windows hosts to record API calls, network flows,
file I/O, and registry changes.
2. Statistical Validation: Quantitative analysis of feature distributions to ensure discriminability and inform feature
selection.
3. Model Training and Optimization: Comparative evaluation of ensemble and deep learning classifiers, with
hyperparameter tuning via grid search and cross-validation.
4. Simulation-based Evaluation: Deployment within an NS-3-driven enterprise network simulation to measure
detection latency, resource overhead, and detection efficacy under realistic adversarial scenarios.
The remainder of the manuscript is organized as follows. Section 2 reviews relevant literature on behavior-based malware
detection and Al-driven classification. Section 3 details the methodology, including data collection, feature engineering,
preprocessing, and classifier configuration. Section 4 presents statistical analysis of dynamic features. Section 5 describes
the simulation research setup and scenarios. Section 6 reports experimental results, comparing model performance and
system overhead. Section 7 concludes with insights, limitations, and directions for future work, including online learning

and adversarial robustness enhancements.
LITERATURE REVIEW

The evolution of malware detection techniques reflects a progression from static signature matching to dynamic, Al-driven
analysis. Early antivirus systems relied on signature databases to identify known threats; however, the rise of polymorphic
malware in the early 2000s exposed the fragility of static defenses. Manual heuristics and rule-based systems emerged as a
stopgap, but these approaches often suffered from high false-positive rates due to the complexity of accurately capturing
malicious behavior through handcrafted rules.

Static analysis classifiers extract features such as imported function lists, section entropy, and opcode frequencies directly
from the binary without execution. Notable datasets like Ember have facilitated research in static ML-based detection; yet,
static methods remain vulnerable to packing, encryption, and code injection. In contrast, dynamic analysis—sandbox
execution to record runtime telemetry—provides rich contextual information. Schultz et al. pioneered dynamic classification
using decision trees on API call counts, achieving around 90% detection accuracy but requiring manual feature curation.
Deep learning has further advanced dynamic detection by modeling sequential API call data. Kolosnjaji et al. applied
recurrent neural networks (RNNs) to raw API traces, improving accuracy to over 95% but at the cost of significant
computation and memory overhead. Hybrid models combine static and dynamic features to leverage complementary
strengths; for instance, refined feature sets incorporating both file metadata and behavior vectors have reached detection rates
above 97% in offline settings.

Real-time deployment introduces additional constraints. High-throughput environments demand low-latency inference and
minimal resource footprint. Techniques such as feature importance ranking and model compression have been proposed to
prune extraneous telemetry and accelerate inference. Wang et al. demonstrated that selecting the top 20 most informative
dynamic features reduced average inference time by 40% with less than 1% drop in accuracy.

Adversarial tactics targeting ML-based detectors pose another frontier. Attackers can subtly manipulate behavior traces to
evade classification, necessitating defenses like adversarial training, ensemble diversification, and runtime integrity checks.
Lee et al. found that randomizing classifier architectures within an ensemble reduced successful evasion attempts by 60%,

highlighting the importance of architectural heterogeneity.
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This literature underscores the potential and challenges of Al-driven malware detection, motivating our integrative
framework that balances accuracy, efficiency, and robustness in real-world deployments.
METHODOLOGY
Our Al-driven detection system consists of four sequential phases: data collection, feature extraction, preprocessing, and
classifier training.
3.1. Data Collection
A balanced dataset of 10,000 Windows Portable Executable (PE) samples was assembled—35,000 benign applications from
trusted open-source repositories (e.g., GitHub, SourceForge) and 5,000 malware specimens representing ransomware,
trojans, banking trojans, botnets, spyware, and rootkits, sourced from VirusTotal and private industry feeds. Each sample
was executed in a Windows 10 virtual machine instrumented with Sysmon, network packet capture (Wireshark), and custom
registry monitoring scripts, confined by networking restrictions to prevent real-world propagation. Execution lasted five
minutes per sample, capturing transient and persistent behavior.
3.2. Feature Extraction
Dynamic telemetry encompassed four categories:
e API Call Sequences: Timestamped logs of Win32 API invocations, aggregated into frequency counts and n-gram
embeddings.
o Network Traffic Metrics: Total bytes sent/received, packet size distribution statistics (mean, median, variance),
DNS query counts, and destination IP diversification metrics.
¢ File System Operations: Counts and temporal distributions of file creates, reads, writes, deletes, and modifications.
e Registry Modifications: Number of key/value creations, deletions, and modifications across critical hive paths
(HKLM, HKCU).
Raw time-series data were summarized into 120 statistical descriptors: means, variances, minima, maxima, and percentiles
for each telemetry stream.
3.3. Preprocessing
Features with over 20% missing values were excluded. Remaining missing entries were imputed using median values per
feature. To address residual class imbalance and ensure robust learning, we applied SMOTE (Synthetic Minority Over-
sampling Technique); although classes were numerically balanced, SMOTE mitigates possible distributional skews in feature
space.
All numerical features were normalized via min—max scaling to the [0, 1] range to facilitate convergence and stability in ML
algorithms.
3.4. Classifier Training
We evaluated three models:
1. Random Forest (RF): Configured with 200 decision trees, maximum depth of 30, Gini impurity criterion, and
bootstrap sampling enabled. Feature importance metrics were recorded for interpretability.
2. Support Vector Machine (SVM): Utilized an RBF kernel, penalty parameter C = 1.0, gamma = 0.01; training
leveraged the LIBSVM implementation with probability outputs.
3. Deep Neural Network (DNN): Architected with four fully connected hidden layers of sizes 512, 256, 128, and 64

neurons respectively, ReLU activations, dropout rate 0.5 after each hidden layer, and a final softmax output layer
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for binary classification. Training employed Adam optimizer, learning rate 0.001, batch size 64, and early stopping
based on validation loss.
Hyperparameter tuning for each model was conducted via grid search over training folds, using four-fold stratified cross-
validation to avoid data leakage. The best-performing parameter sets were then retrained on the full training data and
evaluated on held-out test folds.
STATISTICAL ANALYSIS
To validate the discriminative capacity of dynamic features, we conducted descriptive and inferential statistical analyses.
Table 1 summarizes key feature descriptors across benign and malicious samples.

Table 1. Descriptive statistics of selected dynamic features

Feature Class Mean Std. Dev. Min Max
API Call Count Benign 180.5 352 90 300
Malicious 310.7 45.8 150 520
Network Bytes Transferred Benign 2,015.3 450.1 300 4,000
Malicious 5,420.6 1,120.4 800 9,800
File System Operations Benign 28.4 8.9 5 55
Malicious 45.9 12.3 10 85
Registry Modifications Benign 7.3 2.1 0 15
Malicious 18.4 4.8 2 30
Feature
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Fig.3 Descriptive statistics of selected dynamic features
Two-sample t-tests for API Call Count and File System Operations yielded p-values < 0.001, indicating statistically
significant differences between classes. Mann—Whitney U tests on non-normally distributed metrics (Network Bytes
Transferred) also confirmed class separation (p < 0.001). These results justify the inclusion of these descriptors in the

classification pipeline and inform feature importance analysis in the RF model.

SIMULATION RESEARCH
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To assess operational feasibility, we constructed a simulation testbed in NS-3, modeling an enterprise network with 200 client
hosts, a file server, and a web server connected via a gigabit Ethernet switch. Regular user traffic, including file downloads,
HTTP requests, and peer-to-peer updates, was generated using traffic generators. Malware injection followed two patterns:

e Stealth Attack: One malicious execution every 30 minutes, mimicking low-profile Advanced Persistent Threat

(APT) behavior.

e  Burst Attack: 100 malware executions within a 10-minute window, simulating ransomware or worm outbreaks.
Feature extraction agents (lightweight daemons) on each host streamed aggregated feature vectors every 60 seconds to a
central classification server (Intel Xeon E5, 16 cores, 32 GB RAM) over a secure gRPC channel. The Random Forest
classifier was deployed as a RESTful microservice, handling up to 50 requests per second.

Metrics measured:

e Detection Latency: Time from feature vector transmission to classification decision.

e CPU & Memory Utilization: On the classification server during normal, stealth, and burst scenarios.

o Detection Rate & False Positives: Percentage of malicious samples correctly identified, and benign samples

misclassified.
RESULTS

6.1. Classification Performance

Under four-fold cross-validation on the training dataset, the RF classifier outperformed alternatives:

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Random Forest 97.8 96.5 98.1 973
SVM 95.4 94.2 96.0 95.1
DNN 96.7 95.8 97.2 96.5
Model
99
98 972 97.3
97
96
95
94
93 I
92
Accuracy (%) Precision (%) Recall (%) F1-Score (%)

B Random Forest HSVM DNN

Fig.4
Feature importance from RF highlighted API call patterns and registry modification counts as top discriminators, accounting
for over 65% of total importance weight. The DNN exhibited robust performance but incurred longer inference times

(~180 ms) compared to RF (~120 ms).
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6.2. Simulation Findings
e Stealth Attack Scenario: RF achieved 99% detection rate with zero false positives; average detection latency
110 ms; CPU peak 55%; memory usage 3.2 GB.
e Burst Attack Scenario: RF maintained 97% detection within 2 minutes; average decision time 125 ms/sample;
CPU peaked at 65% under 50 concurrent classification requests; memory peaked at 4 GB.
SVM and DNN models showed similar detection rates but higher resource footprints (SVM CPU peak 80%, DNN 72%) and
longer latencies (SVM 250 ms, DNN 180 ms), underscoring RF’s suitability for high-throughput deployments.

CONCLUSION

This manuscript has presented an Al-driven malware behavior classification and detection system that addresses the
shortcomings of static, signature-based defenses. By harnessing dynamic feature extraction, rigorous statistical validation,
ensemble learning, and realistic simulation-based evaluation, the proposed framework delivers high detection accuracy
(97.8%), low latency (120 ms), and efficient resource utilization suitable for enterprise-scale SOC and SIEM integration.
Key contributions include:

e  Arich feature set capturing API calls, network traffic, file I/O, and registry changes.

e  Statistical evidence supporting feature discriminability and guiding model interpretability.

e Comparative analysis demonstrating Random Forest’s balance of performance and efficiency.

e A simulation environment validating real-time operational viability under stealth and burst attack patterns.
Future research will explore online learning algorithms to adapt to evolving malware behaviors without full retraining,
adversarial resilience through ensemble diversification and adversarial training, and extension to additional platforms (Linux,
macOS). Integration with threat intelligence feeds and automated incident response orchestration will further enhance the

system’s proactive defense capabilities.
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