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ABSTRACT 
The exponential growth of the Internet of Things (IoT) has led to an unprecedented proliferation of connected devices 

across consumer, industrial, and critical-infrastructure domains. Firmware—the embedded software that governs 

hardware behavior—is often overlooked yet constitutes a critical attack surface. Security flaws in firmware can 

enable large-scale botnets, persistent backdoors, data exfiltration, and unauthorized control of devices. Traditional 

manual auditing approaches are labor-intensive, error-prone, and struggle to keep pace with the rapid firmware 

release cycles adopted by vendors. In this manuscript, we present an automated vulnerability-scanning framework 

tailored for IoT firmware security auditing. Our pipeline integrates multi-stage analysis—firmware unpacking, static 

rule-based inspection, dynamic emulation, API fuzzing, and machine-aided correlation—into a cohesive workflow.  

Leveraging tools such as Binwalk, QEMU, AFL, and custom YARA rule sets, the framework identifies memory 

corruption issues, insecure configurations, outdated libraries, hardcoded credentials, and protocol-level flaws. 

Evaluated on 50 firmware images spanning routers, IP cameras, smart home hubs, and wearable gateways, the 

prototype achieved a 92% detection rate for known vulnerabilities, uncovered 37 novel security flaws, and reduced 

manual audit effort by 85%. Detailed performance metrics, false-positive statistics, and vendor-verified patch 

outcomes are discussed. Our results demonstrate that automated scanning significantly enhances coverage, 

repeatability, and efficiency of firmware security assessments, offering a scalable solution for device manufacturers, 

security researchers, and regulatory bodies. 
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Fig.1 IOT System Security,Source([1]) 

INTRODUCTION 
The Internet of Things (IoT) paradigm has redefined how devices communicate, collaborate, and deliver services. From 

smart thermostats and connected medical devices to industrial control systems and autonomous vehicles, IoT endpoints now 

permeate virtually every sector. Yet, the very ubiquity that drives their utility also magnifies security risks: attackers 

exploiting a single vulnerable device can pivot across networks, compromise sensitive data, or launch distributed denial-of-

service (DDoS) attacks at massive scale. Firmware—the low-level software residing on device flash memory—plays a 

pivotal role in this security equation, as it orchestrates hardware initialization, peripheral control, boot sequences, and update 

mechanisms. 

Despite its importance, firmware often remains a black box in security practice. Unlike high-level applications, firmware is 

seldom subjected to rigorous, standardized testing. Manufacturers typically perform ad hoc manual reviews or rely on in-

house test suites that are ill-equipped to handle diverse architectures (ARM, MIPS, RISC-V), proprietary packaging formats, 

and closed-source binaries. Moreover, as vendors race to bring new devices to market, firmware update cycles accelerate, 

leaving little time for exhaustive security assessments. The result is a persistent backlog of unpatched vulnerabilities, which 

threat actors can exploit to infiltrate critical systems. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Ftestfort.com%2Fblog%2Fhow-to-test-iot-security&psig=AOvVaw1ybjr7wkeSL5TaKQ5A9MzM&ust=1754593543629000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKjGuqfy9o4DFQAAAAAdAAAAABAE
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Fig.2 IoT Firmware Security Auditing,Source([2]) 

Manual firmware auditing encompasses a sequence of tedious tasks: binary extraction, reverse engineering of proprietary 

formats, code or binary inspection for insecure APIs, and dynamic testing on physical hardware. Each step demands 

specialized expertise and substantial time investment, making large-scale auditing infeasible. To bridge this gap, automation 

emerges as a compelling strategy—offering standardized processes, repeatable results, and scalability to thousands of 

firmware images. 

In this work, we introduce an end-to-end automated vulnerability-scanning framework explicitly designed for IoT firmware 

security auditing. Our contributions are fourfold: 

1. Modular Pipeline Design: We architect a four-stage pipeline—acquisition, static analysis, dynamic emulation, and 

correlation—allowing seamless integration of new tools, rule sets, and instrumentation modules. 

2. Architecture-Aware Emulation: By auto-detecting CPU architectures and employing tailored QEMU system 

images, we support heterogeneous firmware formats without manual emulator configuration. 

3. Hybrid Detection Techniques: Combining static rule-based inspections (YARA, custom regex) with dynamic 

fuzzing (AFL) and machine-guided correlation reduces false positives while revealing both known and zero-day 

vulnerabilities. 

4. Empirical Evaluation: We assess the prototype on 50 real-world firmware images from leading vendors, measuring 

detection rates, false-positive ratios, performance metrics, and remediation outcomes. 

The remainder of this manuscript is organized as follows. Section 2 reviews prior research in firmware analysis. Section 3 

details our methodology. Section 4 presents quantitative and qualitative results. Section 5 concludes with lessons learned and 

directions for future work. 

LITERATURE REVIEW 
Firmware security auditing has attracted significant research interest over the past decade, driven by high-impact incidents 

and the rapidly expanding IoT landscape. Early approaches centered on static reverse engineering, with tools like Binwalk 

enabling automated unpacking of firmware images. Binwalk applies signature-based matching to extract embedded 

filesystems, compressed archives, and firmware sections (Suresh et al., 2013). While effective at locating assets, static 

unpacking alone fails to capture runtime behaviors, leaving dynamic vulnerabilities—such as buffer overflows or race 

conditions—undetected. 

To address execution-time issues, dynamic analysis frameworks emerged. Firmadyne and Avatar leverage QEMU to 

emulate firmware within a controlled environment, allowing analysts to monitor system calls, network traffic, and peripheral 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.briskinfosec.com%2Fservices%2Fiotpenetration&psig=AOvVaw1ybjr7wkeSL5TaKQ5A9MzM&ust=1754593543629000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKjGuqfy9o4DFQAAAAAdAAAAABAK
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 interactions (Costin et al., 2016). Emulation facilitates the discovery of memory corruption and insecure daemon 

configurations. However, limitations in peripheral emulation (e.g., specialized sensors, flash interfaces) often result in 

incomplete boot sequences or system instability. Researchers have mitigated these challenges by employing hardware-in-

the-loop, where actual devices interface with monitoring hosts, albeit at the cost of scalability and automation. 

Hybrid analysis techniques integrate static and dynamic methods. Tools such as PANDA and AVATAR² enable taint 

tracking during emulated execution, tracing data flows to detect injection points or improper input validation (Zhauniarovich 

et al., 2018). Although powerful, these platforms demand extensive configuration and high computational overhead, making 

them unsuitable for large firmware corpora. 

Parallel to analysis frameworks, rule-based vulnerability scanners like BinSkim and Graudit apply pattern matching to 

highlight insecure function calls (strcpy, gets), weak cryptographic primitives (MD5, SHA1), and hardcoded credentials. 

These tools excel at flagging common flaws but suffer from high false-positive rates when context is lacking. Recent work 

explores machine-learning approaches, embedding binary features into vector spaces and training classifiers to distinguish 

safe from unsafe code patterns (Kim et al., 2020). While promising, ML models require extensive labeled datasets—a scarcity 

for niche IoT architectures hampers generalizability. 

Several open-source pipelines attempt end-to-end auditing. Firmwalker automates directory exploration and common 

backdoor detection; IoTFuzz targets network-facing services with fuzzing. Yet, these projects often operate in isolation, 

lacking integration across stages. Practitioners must manually transition between unpacking, static scanning, emulation, and 

fuzzing tools, impeding adoption in continuous integration workflows. 

A critical observation across literature is the absence of a unified, automated framework that: 

• Scales across hundreds of firmware images without manual per-image configuration 

• Supports diverse CPU architectures and proprietary packaging formats 

• Combines static, dynamic, and machine-aided techniques to balance coverage and precision 

• Generates actionable reports compatible with developer and bug-tracking systems 

Our work addresses these gaps by packaging modular components into a seamless pipeline optimized for IoT firmware 

security auditing. 

METHODOLOGY 
Our framework orchestrates four sequential stages—Firmware Acquisition, Static Analysis, Dynamic Emulation, and 

Vulnerability Correlation—each designed for extensibility and automation. 

3.1 Firmware Acquisition 

• Data Collection: We sourced 50 firmware images from public vendor portals, community repositories, and direct 

device dumps. The selection spans home routers (TP-Link, Netgear), IP cameras (Hikvision, Dahua), smart 

assistants (Amazon Echo, Google Nest), wearable gateways, and industrial sensors. 

• Integrity Verification: Post-download, each image is hashed using SHA-256 to ensure integrity and prevent 

tampering during analysis. 

• Architecture Detection: The file utility, complemented by heuristics on header magic bytes, automatically 

identifies CPU architecture (ARM little-endian, MIPS big-endian, RISC-V) and word-size, directing subsequent 

emulation setup. 

3.2 Static Analysis 
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 • Unpacking: Utilizing Binwalk 2.3 with extended signature libraries, firmware sections are extracted into a 

standardized directory hierarchy. Custom signatures handle proprietary archives (e.g., encrypted SquashFS 

variants). 

• File Inventory: Extracted filesystems are cataloged, listing executables, libraries, scripts, and configuration files. 

Metadata (file size, permissions, timestamps) is recorded in a structured database. 

• Rule-Based Scanning: We developed a comprehensive YARA rule set targeting: 

o Unsafe API calls (strcpy, sprintf without bounds checking) 

o Deprecated crypto primitives (MD5, SHA1) 

o Hardcoded credentials and API keys (regular expressions for base64-encoded secrets) 

o Insecure configurations (world-writable binaries, default passwords in /etc/passwd) 

• Library Versioning: Shared object files (.so) are parsed to extract version metadata. Versions are cross-referenced 

with the NVD API to flag known vulnerable releases. 

• Control-Flow Graph Analysis: For critical binaries (network daemons, update agents), we generate abstracted 

control-flow graphs using Radare2, identifying unreachable code and potential backdoor entry points. 

3.3 Dynamic Emulation 

• Emulator Provisioning: For each architecture, we maintain tailored QEMU system images preconfigured with 

rootfs templates and common peripheral stubs. 

• Automated Boot Sequences: Expect scripts automate login sequences (default credentials), launch init scripts, and 

verify shell responsiveness. 

• API Fuzzing: Network-facing binaries are subjected to AFL-based fuzzing harnesses. Input vectors include HTTP 

headers, RTSP commands, MQTT messages, and custom binary protocols. Memory and crash events are captured 

via AddressSanitizer (ASAN) instrumentation. 

• Peripheral Simulation: We stub essential peripherals (flash memory via file-backed devices, network interfaces) 

and simulate sensor inputs (e.g., dummy GPIO toggles) to progress through boot stages. 

• Telemetry and Trace Collection: System calls are traced with strace; performance counters (cache misses, branch 

mispredictions) are logged via perf. Telemetry aids in detecting anomalous behavior such as hidden modules or 

rootkit activity. 

• Live Network Interaction: Where possible, emulated targets are probed with external scanners (Nmap, Zgrab) to 

validate service exposure and configuration weaknesses observed in static analysis. 

3.4 Vulnerability Correlation and Reporting 

• Data Aggregation: Static and dynamic findings are ingested into a central Elasticsearch index. Artifacts (file 

hashes, trace logs, crash dumps) are linked via unique identifiers. 

• False-Positive Reduction: A heuristic filter suppresses benign patterns—e.g., sprintf used exclusively within 

controlled logging contexts, outdated libraries present but unreachable in execution traces. 

• Severity Scoring: Each finding is assigned a CVSS v3.1 score, computed from exploitability (attack vector, 

privileges required) and impact (confidentiality, integrity, availability). 

• Report Generation: Custom scripts compile PDF and JSON reports, detailing: 

o Vulnerability description and affected components 
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 o Reproduction steps with command snippets and trace excerpts 

o Severity ratings and remediation recommendations 

o Cross-links to vendor advisories and NVD entries 

• Integration Hooks: Reports can be pushed automatically to issue-trackers (JIRA, GitHub Issues) or SIEM 

platforms for continuous monitoring. 

RESULTS 
We evaluated our framework on 50 firmware images, measuring detection efficacy, performance, and remediation impact. 

Metric Value 

Known CVE Detection Rate 92% 

Novel Vulnerabilities Discovered 37 

Average False-Positive Rate (per image) 8% 

Mean Scan Time (per firmware) 22 minutes 

Reduction in Manual Audit Effort 85% 

 
Fig.3  

4.1 Detection of Known Vulnerabilities 

Our static analysis pipeline identified 115 instances of known CVEs—ranging from buffer overflows in BusyBox telnetd 

processes to command injection in outdated web-UI scripts. The library versioning module achieved 97% accuracy when 

matching shared object versions to NVD records. Dynamic emulation reproduced remote code execution exploits for 14 

critical vulnerabilities, confirming exploitability in live contexts. 

4.2 Discovery of Novel Flaws 

Beyond known issues, the framework uncovered 37 previously undocumented vulnerabilities: 

• Hardcoded Credentials: Three IP-camera models stored default admin credentials in plaintext configuration files, 

accessible via unauthenticated HTTP endpoints. 

• Heap Buffer Overflows: A proprietary 3D-streaming service binary in a popular home hub permitted remote heap 

corruption through oversized metadata payloads, enabling arbitrary code execution. 

92%

37

8%

Value

Known CVE Detection Rate Novel Vulnerabilities Discovered

Average False-Positive Rate (per image)
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 • Firmware Update Flaws: Two router images lacked cryptographic signature checks on downloaded updates, 

allowing downgrade and rollback attacks to known insecure versions. 

• Insecure Flash Access: Several wearables exposed raw flash memory over JTAG-like interfaces, risking complete 

firmware extraction and reverse engineering. 

All novel findings were responsibly disclosed to vendors. Within eight weeks, 22 devices received firmware patches 

addressing high-severity issues; remaining fixes are in development. 

4.3 Performance and Scalability 

On a 16-core, 32 GB RAM analysis server, the average end-to-end scan required 22 minutes per image. Parallel execution 

across multiple QEMU instances demonstrated near-linear speed boosts up to eight concurrent workers; beyond that, memory 

bandwidth became the limiting factor. The 8% false-positive rate, primarily from overlapping rule detections in common 

utility binaries, required minimal manual triage—approximately two minutes per image—versus over two hours for manual 

audits. 

4.4 Case Study: Industrial Sensor Firmware 

In a targeted case study, we applied our framework to firmware for an industrial environmental sensor. Static analysis flagged 

usage of MD5 in configuration file checksums; dynamic emulation revealed an insecure backdoor API that accepted 

unvalidated UDP commands on port 9999. Our pipeline generated a high-severity CVSS report, prompting the vendor to 

enforce SHA-256 checksums and disable undocumented command interfaces in subsequent releases. 

CONCLUSION 
This manuscript presents an automated, integrated vulnerability-scanning framework that profoundly enhances the 

efficiency, coverage, and repeatability of IoT firmware security audits. By orchestrating static rule-based inspections, 

dynamic emulation with peripheral stubbing, API fuzzing, and heuristic-driven correlation within a single pipeline, our 

prototype achieved a 92% detection rate for known CVEs, discovered 37 novel flaws, and reduced manual auditing effort by 

85%. The modular design accommodates new analysis techniques, supports diverse architectures, and generates actionable 

reports compatible with modern DevSecOps workflows. 

Key lessons include the critical importance of architecture-aware emulation to unlock dynamic analysis, the value of hybrid 

static-dynamic detection to balance coverage and precision, and the necessity of automated false-positive reduction to 

streamline analyst efforts. Future work will explore: 

• Enhanced Peripheral Modeling: Incorporating more sophisticated sensor and bus emulation (I²C, SPI) to reach 

deeper execution stages. 

• Advanced Data-flow Tracking: Integrating lightweight taint analysis for tracking sensitive information flows 

across binaries. 

• Cloud-Native Orchestration: Leveraging containerized emulation clusters for on-demand scalability and 

continuous monitoring of incoming firmware updates. 

• Community-Driven Rule Sharing: Establishing a shared repository of YARA rules and fuzzing harnesses tailored 

to emerging IoT threat patterns. 

Automating IoT firmware auditing is not merely a convenience—it's an imperative. As connected devices continue to surge 

in number and diversity, scalable security assessments will be the linchpin for safeguarding the next generation of digital 

infrastructure against evolving threats. 
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