

32 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

 IoT Firmware Security Auditing Using Automated

Vulnerability Scanning
DOI: https://doi.org/10.63345/ijarcse.v1.i3.205

Dr. Saurabh Solanki

Aviktechnosoft Private Limited

Govind Nagar Mathura, UP, India, PIn-281001,

saurabh@aviktechnosoft.com

www.ijarcse.org || Vol. 1 No. 3 (2025): August Issue

Date of Submission: 30-07-2025 Date of Acceptance: 07-08-2025 Date of Publication: 10-08-2025

ABSTRACT
The exponential growth of the Internet of Things (IoT) has led to an unprecedented proliferation of connected devices

across consumer, industrial, and critical-infrastructure domains. Firmware—the embedded software that governs

hardware behavior—is often overlooked yet constitutes a critical attack surface. Security flaws in firmware can

enable large-scale botnets, persistent backdoors, data exfiltration, and unauthorized control of devices. Traditional

manual auditing approaches are labor-intensive, error-prone, and struggle to keep pace with the rapid firmware

release cycles adopted by vendors. In this manuscript, we present an automated vulnerability-scanning framework

tailored for IoT firmware security auditing. Our pipeline integrates multi-stage analysis—firmware unpacking, static

rule-based inspection, dynamic emulation, API fuzzing, and machine-aided correlation—into a cohesive workflow.

Leveraging tools such as Binwalk, QEMU, AFL, and custom YARA rule sets, the framework identifies memory

corruption issues, insecure configurations, outdated libraries, hardcoded credentials, and protocol-level flaws.

Evaluated on 50 firmware images spanning routers, IP cameras, smart home hubs, and wearable gateways, the

prototype achieved a 92% detection rate for known vulnerabilities, uncovered 37 novel security flaws, and reduced

manual audit effort by 85%. Detailed performance metrics, false-positive statistics, and vendor-verified patch

outcomes are discussed. Our results demonstrate that automated scanning significantly enhances coverage,

repeatability, and efficiency of firmware security assessments, offering a scalable solution for device manufacturers,

security researchers, and regulatory bodies.

KEYWORDS
IoT firmware security auditing; automated vulnerability scanning; static analysis; dynamic emulation; embedded

device security

https://doi.org/10.63345/ijarcse.v1.i3.205
mailto:saurabh@aviktechnosoft.com
http://www.ijarcse.org/

33 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

Fig.1 IOT System Security,Source([1])

INTRODUCTION
The Internet of Things (IoT) paradigm has redefined how devices communicate, collaborate, and deliver services. From

smart thermostats and connected medical devices to industrial control systems and autonomous vehicles, IoT endpoints now

permeate virtually every sector. Yet, the very ubiquity that drives their utility also magnifies security risks: attackers

exploiting a single vulnerable device can pivot across networks, compromise sensitive data, or launch distributed denial-of-

service (DDoS) attacks at massive scale. Firmware—the low-level software residing on device flash memory—plays a

pivotal role in this security equation, as it orchestrates hardware initialization, peripheral control, boot sequences, and update

mechanisms.

Despite its importance, firmware often remains a black box in security practice. Unlike high-level applications, firmware is

seldom subjected to rigorous, standardized testing. Manufacturers typically perform ad hoc manual reviews or rely on in-

house test suites that are ill-equipped to handle diverse architectures (ARM, MIPS, RISC-V), proprietary packaging formats,

and closed-source binaries. Moreover, as vendors race to bring new devices to market, firmware update cycles accelerate,

leaving little time for exhaustive security assessments. The result is a persistent backlog of unpatched vulnerabilities, which

threat actors can exploit to infiltrate critical systems.

https://www.google.com/url?sa=i&url=https%3A%2F%2Ftestfort.com%2Fblog%2Fhow-to-test-iot-security&psig=AOvVaw1ybjr7wkeSL5TaKQ5A9MzM&ust=1754593543629000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKjGuqfy9o4DFQAAAAAdAAAAABAE

34 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

Fig.2 IoT Firmware Security Auditing,Source([2])

Manual firmware auditing encompasses a sequence of tedious tasks: binary extraction, reverse engineering of proprietary

formats, code or binary inspection for insecure APIs, and dynamic testing on physical hardware. Each step demands

specialized expertise and substantial time investment, making large-scale auditing infeasible. To bridge this gap, automation

emerges as a compelling strategy—offering standardized processes, repeatable results, and scalability to thousands of

firmware images.

In this work, we introduce an end-to-end automated vulnerability-scanning framework explicitly designed for IoT firmware

security auditing. Our contributions are fourfold:

1. Modular Pipeline Design: We architect a four-stage pipeline—acquisition, static analysis, dynamic emulation, and

correlation—allowing seamless integration of new tools, rule sets, and instrumentation modules.

2. Architecture-Aware Emulation: By auto-detecting CPU architectures and employing tailored QEMU system

images, we support heterogeneous firmware formats without manual emulator configuration.

3. Hybrid Detection Techniques: Combining static rule-based inspections (YARA, custom regex) with dynamic

fuzzing (AFL) and machine-guided correlation reduces false positives while revealing both known and zero-day

vulnerabilities.

4. Empirical Evaluation: We assess the prototype on 50 real-world firmware images from leading vendors, measuring

detection rates, false-positive ratios, performance metrics, and remediation outcomes.

The remainder of this manuscript is organized as follows. Section 2 reviews prior research in firmware analysis. Section 3

details our methodology. Section 4 presents quantitative and qualitative results. Section 5 concludes with lessons learned and

directions for future work.

LITERATURE REVIEW
Firmware security auditing has attracted significant research interest over the past decade, driven by high-impact incidents

and the rapidly expanding IoT landscape. Early approaches centered on static reverse engineering, with tools like Binwalk

enabling automated unpacking of firmware images. Binwalk applies signature-based matching to extract embedded

filesystems, compressed archives, and firmware sections (Suresh et al., 2013). While effective at locating assets, static

unpacking alone fails to capture runtime behaviors, leaving dynamic vulnerabilities—such as buffer overflows or race

conditions—undetected.

To address execution-time issues, dynamic analysis frameworks emerged. Firmadyne and Avatar leverage QEMU to

emulate firmware within a controlled environment, allowing analysts to monitor system calls, network traffic, and peripheral

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.briskinfosec.com%2Fservices%2Fiotpenetration&psig=AOvVaw1ybjr7wkeSL5TaKQ5A9MzM&ust=1754593543629000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCKjGuqfy9o4DFQAAAAAdAAAAABAK

35 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

 interactions (Costin et al., 2016). Emulation facilitates the discovery of memory corruption and insecure daemon

configurations. However, limitations in peripheral emulation (e.g., specialized sensors, flash interfaces) often result in

incomplete boot sequences or system instability. Researchers have mitigated these challenges by employing hardware-in-

the-loop, where actual devices interface with monitoring hosts, albeit at the cost of scalability and automation.

Hybrid analysis techniques integrate static and dynamic methods. Tools such as PANDA and AVATAR² enable taint

tracking during emulated execution, tracing data flows to detect injection points or improper input validation (Zhauniarovich

et al., 2018). Although powerful, these platforms demand extensive configuration and high computational overhead, making

them unsuitable for large firmware corpora.

Parallel to analysis frameworks, rule-based vulnerability scanners like BinSkim and Graudit apply pattern matching to

highlight insecure function calls (strcpy, gets), weak cryptographic primitives (MD5, SHA1), and hardcoded credentials.

These tools excel at flagging common flaws but suffer from high false-positive rates when context is lacking. Recent work

explores machine-learning approaches, embedding binary features into vector spaces and training classifiers to distinguish

safe from unsafe code patterns (Kim et al., 2020). While promising, ML models require extensive labeled datasets—a scarcity

for niche IoT architectures hampers generalizability.

Several open-source pipelines attempt end-to-end auditing. Firmwalker automates directory exploration and common

backdoor detection; IoTFuzz targets network-facing services with fuzzing. Yet, these projects often operate in isolation,

lacking integration across stages. Practitioners must manually transition between unpacking, static scanning, emulation, and

fuzzing tools, impeding adoption in continuous integration workflows.

A critical observation across literature is the absence of a unified, automated framework that:

• Scales across hundreds of firmware images without manual per-image configuration

• Supports diverse CPU architectures and proprietary packaging formats

• Combines static, dynamic, and machine-aided techniques to balance coverage and precision

• Generates actionable reports compatible with developer and bug-tracking systems

Our work addresses these gaps by packaging modular components into a seamless pipeline optimized for IoT firmware

security auditing.

METHODOLOGY
Our framework orchestrates four sequential stages—Firmware Acquisition, Static Analysis, Dynamic Emulation, and

Vulnerability Correlation—each designed for extensibility and automation.

3.1 Firmware Acquisition

• Data Collection: We sourced 50 firmware images from public vendor portals, community repositories, and direct

device dumps. The selection spans home routers (TP-Link, Netgear), IP cameras (Hikvision, Dahua), smart

assistants (Amazon Echo, Google Nest), wearable gateways, and industrial sensors.

• Integrity Verification: Post-download, each image is hashed using SHA-256 to ensure integrity and prevent

tampering during analysis.

• Architecture Detection: The file utility, complemented by heuristics on header magic bytes, automatically

identifies CPU architecture (ARM little-endian, MIPS big-endian, RISC-V) and word-size, directing subsequent

emulation setup.

3.2 Static Analysis

36 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

 • Unpacking: Utilizing Binwalk 2.3 with extended signature libraries, firmware sections are extracted into a

standardized directory hierarchy. Custom signatures handle proprietary archives (e.g., encrypted SquashFS

variants).

• File Inventory: Extracted filesystems are cataloged, listing executables, libraries, scripts, and configuration files.

Metadata (file size, permissions, timestamps) is recorded in a structured database.

• Rule-Based Scanning: We developed a comprehensive YARA rule set targeting:

o Unsafe API calls (strcpy, sprintf without bounds checking)

o Deprecated crypto primitives (MD5, SHA1)

o Hardcoded credentials and API keys (regular expressions for base64-encoded secrets)

o Insecure configurations (world-writable binaries, default passwords in /etc/passwd)

• Library Versioning: Shared object files (.so) are parsed to extract version metadata. Versions are cross-referenced

with the NVD API to flag known vulnerable releases.

• Control-Flow Graph Analysis: For critical binaries (network daemons, update agents), we generate abstracted

control-flow graphs using Radare2, identifying unreachable code and potential backdoor entry points.

3.3 Dynamic Emulation

• Emulator Provisioning: For each architecture, we maintain tailored QEMU system images preconfigured with

rootfs templates and common peripheral stubs.

• Automated Boot Sequences: Expect scripts automate login sequences (default credentials), launch init scripts, and

verify shell responsiveness.

• API Fuzzing: Network-facing binaries are subjected to AFL-based fuzzing harnesses. Input vectors include HTTP

headers, RTSP commands, MQTT messages, and custom binary protocols. Memory and crash events are captured

via AddressSanitizer (ASAN) instrumentation.

• Peripheral Simulation: We stub essential peripherals (flash memory via file-backed devices, network interfaces)

and simulate sensor inputs (e.g., dummy GPIO toggles) to progress through boot stages.

• Telemetry and Trace Collection: System calls are traced with strace; performance counters (cache misses, branch

mispredictions) are logged via perf. Telemetry aids in detecting anomalous behavior such as hidden modules or

rootkit activity.

• Live Network Interaction: Where possible, emulated targets are probed with external scanners (Nmap, Zgrab) to

validate service exposure and configuration weaknesses observed in static analysis.

3.4 Vulnerability Correlation and Reporting

• Data Aggregation: Static and dynamic findings are ingested into a central Elasticsearch index. Artifacts (file

hashes, trace logs, crash dumps) are linked via unique identifiers.

• False-Positive Reduction: A heuristic filter suppresses benign patterns—e.g., sprintf used exclusively within

controlled logging contexts, outdated libraries present but unreachable in execution traces.

• Severity Scoring: Each finding is assigned a CVSS v3.1 score, computed from exploitability (attack vector,

privileges required) and impact (confidentiality, integrity, availability).

• Report Generation: Custom scripts compile PDF and JSON reports, detailing:

o Vulnerability description and affected components

37 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

 o Reproduction steps with command snippets and trace excerpts

o Severity ratings and remediation recommendations

o Cross-links to vendor advisories and NVD entries

• Integration Hooks: Reports can be pushed automatically to issue-trackers (JIRA, GitHub Issues) or SIEM

platforms for continuous monitoring.

RESULTS
We evaluated our framework on 50 firmware images, measuring detection efficacy, performance, and remediation impact.

Metric Value

Known CVE Detection Rate 92%

Novel Vulnerabilities Discovered 37

Average False-Positive Rate (per image) 8%

Mean Scan Time (per firmware) 22 minutes

Reduction in Manual Audit Effort 85%

Fig.3

4.1 Detection of Known Vulnerabilities

Our static analysis pipeline identified 115 instances of known CVEs—ranging from buffer overflows in BusyBox telnetd

processes to command injection in outdated web-UI scripts. The library versioning module achieved 97% accuracy when

matching shared object versions to NVD records. Dynamic emulation reproduced remote code execution exploits for 14

critical vulnerabilities, confirming exploitability in live contexts.

4.2 Discovery of Novel Flaws

Beyond known issues, the framework uncovered 37 previously undocumented vulnerabilities:

• Hardcoded Credentials: Three IP-camera models stored default admin credentials in plaintext configuration files,

accessible via unauthenticated HTTP endpoints.

• Heap Buffer Overflows: A proprietary 3D-streaming service binary in a popular home hub permitted remote heap

corruption through oversized metadata payloads, enabling arbitrary code execution.

92%

37

8%

Value

Known CVE Detection Rate Novel Vulnerabilities Discovered

Average False-Positive Rate (per image)

38 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

 • Firmware Update Flaws: Two router images lacked cryptographic signature checks on downloaded updates,

allowing downgrade and rollback attacks to known insecure versions.

• Insecure Flash Access: Several wearables exposed raw flash memory over JTAG-like interfaces, risking complete

firmware extraction and reverse engineering.

All novel findings were responsibly disclosed to vendors. Within eight weeks, 22 devices received firmware patches

addressing high-severity issues; remaining fixes are in development.

4.3 Performance and Scalability

On a 16-core, 32 GB RAM analysis server, the average end-to-end scan required 22 minutes per image. Parallel execution

across multiple QEMU instances demonstrated near-linear speed boosts up to eight concurrent workers; beyond that, memory

bandwidth became the limiting factor. The 8% false-positive rate, primarily from overlapping rule detections in common

utility binaries, required minimal manual triage—approximately two minutes per image—versus over two hours for manual

audits.

4.4 Case Study: Industrial Sensor Firmware

In a targeted case study, we applied our framework to firmware for an industrial environmental sensor. Static analysis flagged

usage of MD5 in configuration file checksums; dynamic emulation revealed an insecure backdoor API that accepted

unvalidated UDP commands on port 9999. Our pipeline generated a high-severity CVSS report, prompting the vendor to

enforce SHA-256 checksums and disable undocumented command interfaces in subsequent releases.

CONCLUSION
This manuscript presents an automated, integrated vulnerability-scanning framework that profoundly enhances the

efficiency, coverage, and repeatability of IoT firmware security audits. By orchestrating static rule-based inspections,

dynamic emulation with peripheral stubbing, API fuzzing, and heuristic-driven correlation within a single pipeline, our

prototype achieved a 92% detection rate for known CVEs, discovered 37 novel flaws, and reduced manual auditing effort by

85%. The modular design accommodates new analysis techniques, supports diverse architectures, and generates actionable

reports compatible with modern DevSecOps workflows.

Key lessons include the critical importance of architecture-aware emulation to unlock dynamic analysis, the value of hybrid

static-dynamic detection to balance coverage and precision, and the necessity of automated false-positive reduction to

streamline analyst efforts. Future work will explore:

• Enhanced Peripheral Modeling: Incorporating more sophisticated sensor and bus emulation (I²C, SPI) to reach

deeper execution stages.

• Advanced Data-flow Tracking: Integrating lightweight taint analysis for tracking sensitive information flows

across binaries.

• Cloud-Native Orchestration: Leveraging containerized emulation clusters for on-demand scalability and

continuous monitoring of incoming firmware updates.

• Community-Driven Rule Sharing: Establishing a shared repository of YARA rules and fuzzing harnesses tailored

to emerging IoT threat patterns.

Automating IoT firmware auditing is not merely a convenience—it's an imperative. As connected devices continue to surge

in number and diversity, scalable security assessments will be the linchpin for safeguarding the next generation of digital

infrastructure against evolving threats.

39 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE)
ISSN (Online): request pending
Volume-1 Issue 3 || Jul- Sep 2025 || PP. 32-39

 REFERENCES

• Costin, A., Zarras, A., Francillon, A., & Stevens, M. (2014). A large-scale analysis of the security of embedded device firmware. Proceedings of the

23rd USENIX Security Symposium, 95–110.

• Suresh, K., Barua, R., & Thomas, J. (2013). Firmware analysis techniques for embedded systems using Binwalk. Journal of Embedded Computing,

5(2), 45–56.

• Bellard, F. (2005). QEMU, a fast and portable dynamic translator. Proceedings of the 2005 USENIX Annual Technical Conference, 41–46.

• Zalewski, M. (2015). Finding software vulnerabilities using American Fuzzy Lop (AFL). Software Testing and Security Journal, 7(4), 12–19.

• Francillon, A., Castelluccia, C., & State, R. (2011). Breaking and fixing embedded device firmware security: A case study of firmware update attacks.

Proceedings of the 2011 ACM Conference on Security, 51–62.

• Costin, A. (2016). Firmadyne: Automatic dynamic firmware analysis at scale. IEEE Transactions on Dependable and Secure Computing, 13(6), 1259–

1272.

• Zhauniarovich, Y., Ivanov, K., & Veial, M. (2018). Scalable firmware analysis with PANDA and Avatar². International Journal of Information Security,

17(3), 345–362.

• Kim, H., Lee, S., & Park, J. (2020). Machine learning-based vulnerability detection in IoT firmware. IEEE Internet of Things Journal, 7(5), 4301–

4310.

• National Institute of Standards and Technology. (2019). Common Vulnerability Scoring System v3.1: Specification Document.

https://www.first.org/cvss/specification-document

• U.S. National Vulnerability Database. (n.d.). Home. Retrieved August 7, 2025, from https://nvd.nist.gov

• Grossman, J., & Kay, J. (2018). YARA—Advanced malware identification tool. Journal of Digital Forensics, Security and Law, 13(2), 23–38.

• OWASP Foundation. (2018). OWASP Internet of Things Project. https://owasp.org/www-project-internet-of-things

• Hu, Y., & Lee, J. (2019). Taint analysis for embedded firmware: Techniques and challenges. ACM Computing Surveys, 52(4), Article 78.

• IoTFuzz Team. (2020). IoTFuzz: Automated network protocol fuzzing for IoT devices. Proceedings of the 29th USENIX Security Symposium, 533–548.

• Coseru, T., Dumitras, T., & Pietraszek, T. (2017). A survey of hardware-assisted dynamic binary instrumentation for firmware analysis. Computer

Security Review, 36, 22–34.

• Yamaguchi, F., Arkin, D., Shebaro, R., & Bushart, J. (2014). Kitchen sink? Firmware rehosting in the modern era. In Black Hat USA (pp. 1–12).

• Cui, A., & Stolfo, S. (2011). Virtual machine introspection techniques for firmware security. Journal of Computer Virology and Hacking Techniques,

7(4), 287–299.

• Lin, Y., Hou, Y., & Miller, B. (2021). Improving IoT firmware update security via secure boot and chain-of-trust. ACM Transactions on Embedded

Computing Systems, 20(3), Article 26.

• Li, C., & Wang, Z. (2015). Automated detection of embedded system vulnerabilities using symbolic execution. IEEE Transactions on Software

Engineering, 41(8), 783–798.

• Xu, W., & Zhang, P. (2022). Continuous firmware monitoring: Towards DevSecOps for IoT. IEEE Software, 39(2), 22–29.

