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ABSTRACT 

Container-based virtual laboratories leverage lightweight operating-system virtualization technologies—chiefly 

Docker containers orchestrated via Kubernetes—to provide flexible, reproducible, and cost-effective practical 

environments for cloud-based education. This study presents the design, deployment, and evaluation of a 

containerized lab framework tailored to undergraduate computer science curricula, comparing traditional VM-based 

labs with containerized solutions (with and without autoscaling). A total of 120 students across three cohorts 

completed identical eight-week modules on programming and networking. Key performance indicators included 

container startup latency, resource utilization, task completion time, and student satisfaction. Containers booted in 

an average of 4.2 s (SD = 0.8), versus VM boot times exceeding 90 s.  

Autoscaling maintained CPU utilization at 65% (SD = 10%), avoiding the peaks (78%, SD = 12%) seen in non-

autoscaled setups. Students in the autoscaled container cohort completed assignments 20.9% faster (M = 25.4 min, 

SD = 4.2) than those using VMs (M = 32.1 min, SD = 6.5; t(78) = 7.45, p < 0.001) and reported higher satisfaction (M 

= 4.3/5). These findings demonstrate that container-based labs with dynamic scaling dramatically improve 

provisioning speed, resource efficiency, and learning outcomes, while reducing infrastructure overhead. The paper 

concludes with best-practice recommendations and discusses scope and limitations. 
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INTRODUCTION 

The shift toward online, hybrid, and flipped-classroom models has intensified demand for robust, on-demand practical 

environments in STEM education. Traditional physical labs impose constraints on scheduling, equipment maintenance, and 

geographic access. Virtual labs built atop full virtual machines (VMs) mitigate some barriers but introduce their own 

challenges: long provisioning times (often over two minutes per VM), substantial compute and storage requirements, and 
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complex maintenance of diverse OS images. These limitations hinder scalability and impose significant costs on educational 

institutions, especially during peak usage periods such as midterms or project deadlines. 

Containerization—packaging applications with their dependencies into isolated, lightweight runtime instances—offers a 

promising alternative. Docker containers share the host OS kernel, enabling sub-second instantiation, reduced disk footprint, 

and efficient resource sharing. Orchestration platforms like Kubernetes add automated workload distribution, self-healing, 

and elastic scaling capabilities, all of which are critical for multi-tenant, on-demand lab services supporting hundreds or 

thousands of simultaneous users. This convergence of containerization and orchestration stands to transform virtual lab 

delivery by dramatically cutting latency and infrastructure costs. 

 

 

Fig.1 Scalable Cloud-Based Education,Source([2]) 

Despite these theoretical advantages, empirical evidence on learning impact remains scarce. Prior work has largely focused 

on technical benchmarks—startup time, container density, or average resource consumption—without exploring student-

centric metrics such as task completion speed, error rates during experimentation, or learner satisfaction. Moreover, many 

existing solutions require substantial DevOps expertise, presenting adoption hurdles for institutions lacking dedicated 

system-administration teams. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F1999-5903%2F16%2F12%2F475&psig=AOvVaw1V0YRf104ONw_Tdoj2jJdJ&ust=1754596363706000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCMDIsf379o4DFQAAAAAdAAAAABAS
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This paper addresses these gaps by presenting a comprehensive evaluation of a container-based virtual lab platform, 

comparing three configurations: (A) traditional VM-based labs, (B) container labs without autoscaling, and (C) container 

labs with Kubernetes-driven autoscaling. We measure system-level metrics (startup latency, CPU/memory utilization), 

pedagogical outcomes (task completion time, error frequency), and subjective feedback (Likert-scale satisfaction). Through 

a controlled study involving 120 students over three semesters, we analyze quantitative and qualitative data to assess the 

efficacy of containerization for scalable cloud-based education. 

LITERATURE REVIEW 

Early virtual lab platforms, such as VLab and NetLab, relied on hypervisor-backed VMs exposed via web interfaces. While 

these platforms improved accessibility, they suffered from prolonged boot times (120–180 s), limited concurrency, and 

substantial maintenance overhead for instructors managing dozens of OS images. The high storage footprint of VM images 

and the necessity of per-VM patching further constrained scalability [1]. 

The advent of containerization shifted focus to more nimble solutions. Guo et al. (2021) introduced a Docker-based 

networking lab where students interacted with containerized routers and hosts via web terminals, achieving average boot 

times under 10 s and supporting five times the student density per server compared to VMs [2]. However, this study did not 

investigate the educational impact on student performance or satisfaction, limiting its pedagogical insights. 

 

Fig.2 Container-Based Virtual Labs,Source([1]) 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2073-431X%2F13%2F8%2F192&psig=AOvVaw1V0YRf104ONw_Tdoj2jJdJ&ust=1754596363706000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCMDIsf379o4DFQAAAAAdAAAAABAE
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Kubernetes has since emerged as a robust orchestration layer for container clusters. Projects like KubeEd and EduK8s 

automate namespace creation, resource quota enforcement, and lifecycle management for student labs. These solutions, while 

powerful, often presuppose instructor proficiency with YAML manifests, Helm charts, and cluster-capacity planning. As a 

result, smaller colleges and departments with minimal DevOps support struggle to adopt them, opting instead for simpler 

Docker-Compose setups that compromise on elasticity under load [3]. 

Research into the pedagogical dimension emphasizes user experience as a critical factor. Wang and Smith (2022) correlated 

lab responsiveness with student engagement, finding that environments provisioning within 15 s elicited 30% higher 

satisfaction scores than those exceeding 30 s [4]. Yet, these correlations lacked controlled comparisons against VM-based 

baselines. Meanwhile, studies on learning outcomes focus on conceptual retention, measured by pre- and post-lab quizzes, 

rather than real-world task efficiency or error resilience during experimentation [5]. 

Our work synthesizes these technical and pedagogical strands by implementing a Kubernetes-backed container lab, 

instrumenting it for both system metrics and student outcomes, and comparing it directly to VM-based and non-autoscaled 

container alternatives. This dual focus on infrastructure performance and learning efficacy provides a comprehensive 

assessment, addressing an important gap in the literature. 

METHODOLOGY 

3.1 Platform Design 

We deployed a Kubernetes cluster on a cloud provider offering autoscaling node pools. Custom Docker images for Python, 

Java, GCC, and networking utilities were built using multi-stage Dockerfiles, ensuring minimal image sizes (~250 MB). An 

NGINX ingress controller handled HTTP/HTTPS routing, while an SSH bastion pod provided secure terminal access. 

PersistentVolumeClaims backed by network-attached storage preserved student work between sessions. 

Kubernetes’ Horizontal Pod Autoscaler (HPA) monitored CPU utilization in each student namespace. When average CPU 

usage exceeded 60% across pods, HPA incremented replicas by one, up to a maximum of three per namespace. Conversely, 

replicas scaled down when utilization fell below 30%. This policy balanced responsiveness and cost control. 

In the non-autoscaling container configuration (Cohort B), each namespace was pre-allocated two pod replicas, regardless 

of demand, leading to resource underutilization during off-peak periods and contention during simultaneous peak usage. The 

VM baseline (Cohort A) provisioned one VM per student via a hypervisor, each preloaded with lab software. 

3.2 Participant Cohorts 

Participants were 120 second-year computer science undergraduates at XYZ University, enrolled in an eight-week “Cloud 

Computing” module. Cohort A (n = 40) used VM labs in Semester 1; Cohort B (n = 40) used container labs without 

autoscaling in Semester 2; Cohort C (n = 40) used autoscaling container labs in Semester 3. All cohorts completed identical 

assignments, supporting cross-cohort comparisons. 

3.3 Data Collection 

System Metrics: Prometheus and Grafana collected container startup time (time from pod creation request to readiness), 

CPU and memory usage per namespace, and autoscaling events.  

Educational Outcomes: 

• Task Completion Time: automatically logged timestamps from lab start to assignment submission. 

• Error Rate: number of failed runs or compilation errors per lab. 

• Satisfaction Survey: administered after week 4 and week 8, five Likert items on responsiveness, reliability, ease 

of use, perceived learning efficacy, and overall satisfaction. 
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3.4 Statistical Procedures 

Descriptive statistics (mean, SD, min, max) summarized each metric. We used independent-samples t-tests to compare task 

times between Cohort A and Cohort C, and one-way ANOVA (with Tukey HSD) for satisfaction scores across all three 

cohorts. Effect sizes (Cohen’s d for t-tests, η² for ANOVA) were computed. Significance threshold was α = 0.05. 

STATISTICAL ANALYSIS 

Descriptive statistics for key metrics in Cohort C (autoscaling containers) appear in Table 1. Cohorts A and B data were 

collected similarly. 

Table 1: System and Educational Metrics for Autoscaling Container Labs (Cohort C) 

Metric Mean Std. Dev. Min Max 

Container Startup Time (seconds) 4.2 0.8 2.9 6.1 

Peak CPU Utilization (%) 65.0 10.0 48.5 86.3 

Task Completion Time (minutes) 25.4 4.2 18.5 34.7 

Error Rate (failures per assignment) 0.8 0.4 0.0 2.0 

Satisfaction Score (1–5 Likert) 4.3 0.5 3.2 5.0 

 

Fig.3 System and Educational Metrics for Autoscaling Container Labs (Cohort C) 

Descriptive insights indicate rapid provisioning (≈4 s) and efficient resource usage. Error rates remained low, reflecting stable 

environments. High satisfaction underscores positive user experience. 

RESULTS 

5.1 Provisioning Performance 

The autoscaling container setup outperformed VM provisioning by a wide margin. VM labs in Cohort A averaged startup 

latencies of 95 s (SD = 20), whereas containers in Cohort C booted in 4.2 s (SD = 0.8), a 95.6% reduction. Cohort B’s non-

autoscaled containers booted similarly (4.0 s, SD = 0.7), but lacked dynamic scaling, leading to resource bottlenecks under 

concurrent load. 

4.2
0.8 2.9

65

10

48.5

25.4

4.2

18.5

0

10

20

30

40

50

60

70

Mean Std. Dev. Min

Metric

Container Startup Time (seconds) Peak CPU Utilization (%)

Task Completion Time (minutes)



 

6 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

 

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE) 

ISSN (Online): request pending 

Volume-1 Issue 3 || October 2025 || PP. 1-7 

CPU utilization patterns highlight autoscaling benefits: Cohort B experienced peaks up to 78% (SD = 12) during 

simultaneous lab launches, occasionally triggering latency spikes and throughput degradation. Cohort C’s HPA responded 

within 10 s to increasing load, provisioning additional pods and capping utilization at 65% on average. 

5.2 Academic Efficiency 

Independent-samples t-tests comparing task completion times between Cohorts A and C yielded t(78) = 7.45, p < 0.001, 

Cohen’s d = 1.66, indicating a very large effect. Cohort C students completed assignments in 25.4 min (SD = 4.2), versus 

32.1 min (SD = 6.5) for VMs—a 20.9% improvement. Cohort B (non-autoscaled containers) averaged 28.7 min (SD = 5.0), 

significantly faster than VMs (t(78) = 4.32, p < 0.001) but slower than autoscaled containers (t(78) = 3.15, p = 0.002). 

Error rates followed a similar trend: Cohort A averaged 1.5 failures/assignment (SD = 0.7), Cohort B 1.2 (SD = 0.6), and 

Cohort C 0.8 (SD = 0.4). Faster, more consistent environments reduced setup-related errors, allowing students to focus on 

core tasks. 

5.3 Student Satisfaction 

One-way ANOVA on end-of-module satisfaction scores across cohorts (A: 3.2, SD = 0.7; B: 3.8, SD = 0.6; C: 4.3, SD = 0.5) 

yielded F(2,117) = 29.6, p < 0.001, η² = 0.34 (large effect). Tukey HSD confirmed Cohort C’s satisfaction was significantly 

higher than A (p < 0.001) and B (p < 0.01). Open-ended feedback emphasized minimal waiting times, stable connections, 

and ease of environment reset as key drivers of positive experience. 

CONCLUSION 

This study validates container-based virtual labs with Kubernetes autoscaling as a superior alternative to VM-based and static 

container solutions for cloud-based education. Major conclusions include: 

• Dramatic Latency Reduction: Containers provision in ~4 s versus ~95 s for VMs, minimizing student idle time. 

• Elastic Resource Management: Autoscaling maintained CPU utilization around 65%, preventing bottlenecks 

during peak demand and reducing idle capacity off-peak. 

• Enhanced Learning Efficiency: Students using autoscaled containers completed tasks 20.9% faster and incurred 

47% fewer failures than VM users. 

• Higher Satisfaction: Learner satisfaction improved by over one full Likert point, reflecting smoother workflows 

and reduced technical frustrations. 

Adopting containerized labs lowers operational costs, simplifies image maintenance, and scales seamlessly to accommodate 

enrollment fluctuations. The open-source ecosystem around Docker and Kubernetes enables customization to varied 

curricular needs, while persistent storage solutions preserve work across sessions. 

Scope and Limitations 

While results are encouraging, several caveats apply: 

1. Single Institutional Context: Conducted at one university with computer science majors; results may not 

generalize to other disciplines or learner profiles. 

2. Network Dependency: High-performance network connectivity underpinned rapid provisioning; institutions with 

constrained bandwidth may observe longer startup times. 

3. Technical Overhead: Kubernetes cluster setup and maintenance require specialized skills and ongoing 

administration resources. 

4. Software Homogeneity: Our images supported a limited set of languages/tools; expanding to diverse or proprietary 

software may complicate image management. 
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5. Short-Term Metrics: We measured immediate task efficiency and satisfaction; longitudinal studies are needed to 

assess deeper learning gains and retention. 

Future work should explore cross-institutional federated clusters, integration with learning-management systems for 

seamless grading, and adaptive autoscaling policies informed by predictive models of student usage patterns. 
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