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ABSTRACT

Smart transportation systems (STS) increasingly rely on AI models that process high-rate data from roadside
cameras, connected vehicles, and infrastructure sensors. Centralized cloud processing alone struggles to meet
stringent real-time constraints for perception, prediction, and control—especially under volatile wireless bandwidth
and bursty event loads. Edge computing helps by placing inference close to data sources, but limited resources on
embedded devices create bottlenecks during peak demand and complicate model lifecycle management. This
manuscript investigates fog computing as a middle-tier orchestration layer between edge and cloud to host elastic
micro-datacenters at network aggregation points (e.g., traffic operations centers, base-station sites, and municipal
fiber hubs). We propose a fog-native architecture that combines (i) latency-aware workload placement, (ii) deadline-
driven scheduling with early-exit inference, (iii) adaptive model compression, and (iv) predictive offloading using
traffic and radio context.

We develop a city-scale simulation that couples a microscopic traffic simulator with a network emulator and a
containerized Al serving stack. Workloads include object detection for incident response, trajectory forecasting for
bus ETA, and signal-phase timing optimization. Compared with cloud-only and edge-only baselines, the proposed
fog+edge approach reduces median end-to-end inference latency by 41-63%, cuts 95th-percentile tail latency by 52—
68%, and increases deadline-meeting rate by 20-33 percentage points under rush-hour load. Bandwidth costs drop
due to upstream feature compression, while energy per inference declines as fog nodes leverage right-sized
GPUs/NPUs at higher utilization. A one-way ANOVA confirms statistically significant improvements across latency
and deadline-meeting rate; post-hoc pairwise tests show fog+edge significantly outperforms both baselines (p < 0.01).
We conclude with practical guidance for municipalities: deploy fog clusters at fiber aggregation rings, use admission
control with soft deadlines, and combine model-aware caching with DAG-level prefetch to tame microbursts.
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INTRODUCTION

Urban mobility is undergoing a data-centric transformation. Roadside units (RSUs) stream 1080p video at 15-30 fps;
connected buses publish telemetry at 10—20 Hz; loop detectors, LiDARs, and weather stations add heterogeneous signals.
Transportation applications convert these streams into actionable insights—detecting crashes and stalled vehicles, predicting
queue lengths, prioritizing ambulances, and retiming signals to reduce delays and emissions. Many of these tasks carry hard
or soft real-time requirements: e.g., incident detection within 500—1000 ms, pedestrian detection in 50—150 ms, and bus

arrival predictions that remain stable despite sudden headway disruptions.
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Fig.1 AI Workloads in Smart Transportation Systems,Source([2])
A purely cloud-centric approach centralizes training and inference, easing operations but incurring network latency,
unpredictable jitter, and high backhaul usage. Conversely, edge-only deployments place models on RSUs or in-vehicle
compute (Jetson-class devices, NPUs), minimizing round-trip but often saturating under load spikes (rainstorms, stadium
egress, accidents) and facing thermal/energy limits. Firmware updates and A/B model rollouts at scale are also cumbersome.
Fog computing offers a middle ground: meshed micro-datacenters located at metro aggregation points and cellular edge
(MEC) sites, connected to RSUs via fiber, 5G NR, or dedicated municipal networks. Fog nodes provide (1) proximity low-
latency compute, (2) elastic scaling across a small pool of heterogeneous accelerators, (3) shared model repositories and
feature caches, and (4) policy-driven workload placement that exploits short-range predictability in traffic flows and radio
conditions. This manuscript studies how fog can host edge AI workloads more reliably and sustainably than either extreme.

We make three contributions:
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1. We formalize an SLA-aware placement problem for transportation Al pipelines, treating each job as a DAG with
stage-specific deadlines and bandwidth footprints.
2.  We design a fog-native runtime that combines early-exit networks, quantization-aware selection, and predictive
offloading based on near-term traffic density and RAN utilization forecasts.
3.  We provide a city-scale simulation showing that fog+edge substantially improves tail latency, deadline-meeting
rate, and energy per inference, with rigorous statistical testing and sensitivity analyses.
The rest of the paper reviews related work, details the methodology, presents statistical analyses and simulation results, and

closes with deployment guidance for city operators.
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Fig.2 Fog Computing for Edge Al Source([1])

LITERATURE REVIEW

Research on computing for intelligent transportation spans three architectures: cloud-centric ITS backends, edge-first
RSU/in-vehicle deployments, and hierarchical edge—fog—cloud pipelines.

Cloud-centric ITS. Early work centralized video analytics and traffic prediction in regional datacenters. Benefits include
unified data governance, simplified model training, and global optimization (e.g., corridor-wide signal retiming). However,
high uplink bandwidth and variable WAN latency degrade responsiveness for incident detection and pedestrian protection.
Techniques such as batched inference and CDN-like model caches ameliorate costs but cannot consistently meet sub-100 ms
requirements for safety-critical events.

Edge computing in STS. Edge-only deployments host CNN detectors and trackers directly on RSUs or vehicle ECUs to
achieve ultra-low latency. The literature documents impressive per-device inference times using pruned/quantized models,
yet highlights constraints: limited memory for multi-model ensembles, thermal throttling, and difficulties coordinating across
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intersections. Edge nodes often struggle during burstiness (e.g., sudden rain reduces visibility, forcing multi-frame fusion;
football games cause pedestrian surges), leading to queue build-ups and dropped frames.
Fog computing and MEC. Fog/MEC inserts a regional compute tier with micro-datacenters colocated with base stations or
fiber hubs. Studies report improved latency-throughput trade-offs by pooling accelerators and providing low-hop
communication. Beyond raw compute, fog can host control-plane intelligence: placement solvers, digital twins for traffic,
and shared feature stores. Multi-access edge computing (MEC) standards also enable network slicing and exposure of RAN
metrics (RSRP/RSRQ, PRB utilization), which scheduling algorithms can exploit for deadline-aware routing of jobs.
Scheduling and placement. Prior work frames placement as minimizing end-to-end latency subject to compute, memory,
and bandwidth constraints. Heuristics include earliest-deadline-first (EDF), least-loaded, and ILP relaxations. Recent
methods incorporate model-adaptive strategies (switching between backbone depths, operating points along accuracy—
latency curves) and context-aware features (e.g., weather, time-of-day, predicted congestion).
Model techniques for transportation AI. Roadside perception commonly uses object detection and multi-object tracking
(MOT) paired with re-identification for cross-camera stitching. Trajectory forecasting for vehicles, cyclists, and pedestrians
employs temporal CNNs or graph-based models; bus ETA relies on historical GTFS plus live telemetry. Signal control uses
reinforcement learning (RL) or queue-length estimators to adjust split and offset. Each stage imposes different
compute/bandwidth footprints; integrated pipelines thus benefit from heterogeneous accelerators at fog sites and
lightweight pre-filters at the edge.
Gaps. Despite promising prototypes, many studies evaluate single-intersection scenarios or rely on static loads. Few analyze
tail latency and deadline-meeting rates under realistic, bursty conditions coupled to network dynamics and city events.
This motivates our integrated simulation and statistical assessment.
METHODOLOGY
System Model and Assumptions
e Tiers. We consider three tiers: edge (RSUs with embedded GPU/NPU; selected vehicles), fog (micro-datacenters
at metro fiber rings/RAN aggregation), and cloud (regional datacenter).
e Workloads.
1. Incident Vision (IV): object detection + MOT on 1080p streams to flag crashes and stalled vehicles; soft
deadline 150 ms per frame.
2. Bus ETA (B-ETA): sequence model on telemetry for arrival predictions; deadline 1 s per update.
3. Adaptive Signal Control (ASC): queue estimation + RL policy; decision interval 5 s but sensitive to input
staleness.
e  Pipelines. Jobs are DAGs: ingest — pre-filter — perception — feature aggregation — prediction/control — publish.
Each stage has compute (GFLOPs), memory, and bandwidth.
e SLA. Each job has an end-to-end soft deadline; missing it reduces utility nonlinearly (heavier penalty near safety
criticality).
Fog-Native Runtime
1. Latency-aware placement. A solver places DAG stages onto edge/fog/cloud nodes to minimize expected latency
subject to resource and bandwidth constraints. We use a fast list-scheduling heuristic seeded by a linear-relaxation

of an ILP, updated every 2 s.
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Early-exit inference. Detector backbones (e.g., residual networks) expose intermediate classifiers; when
confidence exceeds threshold, the pipeline exits early, slashing compute and tail latency.

Adaptive compression. The runtime selects quantized/pruned variants per node and temperature; fog nodes host
higher-accuracy models while edges use compact variants.

Predictive offloading. A lightweight LSTM forecasts (a) per-link bandwidth and (b) radio PRB utilization over the
next 5-20 s, steering jobs away from impending congestion.

Feature-store & caching. Fog maintains a short-term cache of embeddings and tracks; edges send features instead
of raw frames when possible, cutting uplink.

Admission control. If predicted tail latency exceeds SLA, the runtime drops non-critical frames (temporal thinning)

or defers batch-insensitive tasks to cloud.

Experimental Setup

Traffic & Mobility. We simulate a 10x10 downtown grid and two arterial corridors with realistic signal timing, bus
routes, and pedestrian phases. Demand profiles include morning peak, mid-day lull, evening peak, and event
surge (stadium egress).
Network. RSU—fog links use fiber or SG backhaul with variable latency (5-25 ms median; heavy-tail jitter). Edges
connect to RSUs over 802.11p/C-V2X with packet loss modeled by a Gilbert—Elliott process.
Compute. Edges: 15 W NPU/embedded GPU; fog: small racks with 4x mid-range GPUs and 2x NPUs; cloud:
high-end GPUs. Containers are orchestrated with a lightweight K8s distro (k3s) and serverless inference (per-
function autoscaling).
Baselines.

o Cloud-only: all inference in cloud; edges perform minimal pre-filtering.

o Edge-only: all inference at RSUs; no fog tier.

o Fog+Edge (Proposed): adaptive placement across edge and fog; cloud handles training and deferred

analytics.

Metrics. End-to-end latency (median, P95), deadline-meeting rate (DMR), uplink bandwidth per camera, energy
per inference, and opex proxy (egress GB).
Repetitions. For each load regime we run 50 seeds (random traffic arrival/packet-loss realizations) to support

significance testing.

STATISTICAL ANALYSIS

We analyze the evening peak (worst-case burstiness). For each configuration we collect per-job latency and DMR across 50

runs (n = 10,000 job completions per run). Normality is assessed via Shapiro—Wilk (latency is right-skewed; we compare

medians and apply log-transform for parametric tests). Primary hypothesis: Fog+Edge achieves lower latency and higher

DMR than Cloud-only and Edge-only. We conduct one-way ANOVA on log-latency and DMR, followed by Bonferroni-

corrected pairwise t-tests. Effect sizes (Cohen’s d) are reported.

Table 1. Summary metrics and significance during evening peak (means = SD over runs)

Metric (evening peak) Cloud- Edge- Fog+Edge p (Cloud vs p (Edge vs

only only (Proposed) Proposed) Proposed)
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End-to-end latency (ms, 238.7+ 171.4 + 101.2 £ 14.7 <0.001 <0.001
median) 31.9 24.6

Tail latency P95 (ms) 5225+ 361.2+ 168.3 £27.9 <0.001 <0.001
78.3 61.0

Deadline-meeting rate (%, | 54.1+6.4 | 71.8+5.9 92.4 +£3.1 <0.001 <0.001

IV, 150 ms)

Uplink per camera (Mbps) 18.6+32 | 49=+1.1 2.1+£0.6 <0.001 <0.01

Energy per inference (J) 273 £ 1.92 £ 1.38 £ 0.22 <0.001 <0.01
0.44 0.31

Notes. ANOVA on log-latency yields F(2,147) = 186.4, p < 0.001; on DMR F(2,147) = 129.7, p < 0.001. Cohen’s d for
Fog+Edge vs Cloud-only on latency = 2.47 (huge effect). Bonferroni correction applied across 2 comparisons per metric.
The trends persist across other load regimes.

SIMULATION RESEARCH AND RESULTS

Workload Profiles

Incident Vision (IV). Cameras at 60 intersections produce 1080p streams. At the edge, a lightweight motion gate discards
static intervals; otherwise frames go to an early-exit detector. When occlusions or rain degrade confidence, features are
shipped to fog for full-depth processing and MOT association across cameras.

Bus ETA (B-ETA). Telemetry from 120 buses is aggregated at fog to stabilize predictions; sporadic gaps due to tunnels or
RAN congestion are imputed using neighboring buses and loop detectors.

Adaptive Signal Control (ASC). Queue estimates and predicted arrivals feed an RL policy. The policy executes at fog to
share state across adjacent intersections, while the final actuation message is multicast to edges every 5 s.

Placement Behavior

Under normal flow, ~70% of IV frames exit early at the edge; ~25% go to fog for refinement, and ~5% are deferred or
dropped by admission control when queues exceed a soft threshold. During event surges, predictive offloading shifts
computation toward fog clusters before queues build, informed by rising pedestrian counts and PRB utilization. The runtime
pins multi-camera MOT association to fog (mem-heavy), while keeping per-camera pre-filters at the edge to trim bandwidth.
Latency and Tail Behavior

Compared with cloud-only, fog+edge reduces median latency by ~58% for IV and ~41% for ASC (which includes policy
evaluation). The more striking improvement is at the tail: P95 drops from >500 ms (cloud) and ~360 ms (edge-only) to ~170
ms (fog+edge). Tail reductions arise from (i) avoiding wide-area backhaul round-trips, (ii) pooling accelerators at fog to
absorb microbursts that would overwhelm single RSUs, and (iii) early-exit pruning on clean frames.

Deadline-Meeting Rate (DMR)

For the 150 ms IV deadline, DMR increases from ~54% (cloud) and ~72% (edge) to ~92% (fog+edge). Importantly, misses
cluster around weather-induced low-visibility periods; with temporal thinning and confidence-aware frame skipping, the
system preserves situational awareness while keeping actuation timely. For B-ETA (1 s deadline), variance shrinks and mean
absolute error of arrival improves thanks to regional aggregation at fog.

Bandwidth and Cost

Replacing full-frame uploads with feature vectors reduces uplink per camera from ~18.6 Mbps (cloud) to ~2.1 Mbps

(fogt+edge) at 15 fps. Even when confidence is low and more frames escalate to fog, upstream compression holds average
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bandwidth below 3 Mbps, enabling denser camera deployments on existing fiber. This also diminishes egress charges from
cloud backends.
Energy and Sustainability
Edge-only wastes energy by idling accelerators during lulls and thermal-throttling during spikes. Fog pooling increases
utilization, improving performance per watt; energy per inference falls by ~28% relative to edge-only and ~49% versus
cloud-only (after accounting for network energy). If the municipality powers fog clusters with renewable PPAs, the carbon
intensity per inference further declines; our sensitivity analysis shows a 22—-35% reduction under a grid-mix scenario.
Robustness and Sensitivity
We vary (a) camera count (40—-100), (b) RAN jitter (x0.5—x2), and (c) model choice (tiny vs small vs base backbones). The
fogtedge advantage persists; when backhaul latency halves, cloud-only narrows the gap but still fails the IV deadline in
surges. When NPUs at RSUs are upgraded, edge-only improves median latency yet still suffers tail blow-ups without pooled
capacity.
Ablations
e  No early-exit: Tail latency +23%, bandwidth +17%, DMR —6 pp.
e No predictive offload: Short-bursts trigger queue spikes at edge; DMR —9 pp.
e No feature store: Bandwidth +42%, fog compute roughly unchanged; indicates caching’s main benefit is link relief.
Practical Takeaways
1. Place fog at fiber rings serving 8—12 intersections each; latency remains within 10-20 ms while retaining pooling
benefits.
2. Treat models as families (tiny/small/base) and let the runtime pick per-node variants by temperature and
confidence.
3. Export RAN metrics to the scheduler; knowing imminent PRB saturation enables preemptive offloading.
4. Use soft deadlines with utility decay rather than binary pass/fail; this avoids brittle behavior under conditions like
heavy rain.
CONCLUSION
This manuscript demonstrated that fog computing is a compelling architectural midpoint for edge Al in smart transportation.
By adding a regional, elastic compute tier and equipping it with latency-aware placement, early-exit inference, adaptive
compression, predictive offloading, and model/feature caching, cities can meet tight perception and control deadlines without
overprovisioning every RSU or paying the latency and egress penalty of cloud-only designs. In city-scale simulations that
couple realistic traffic dynamics with stochastic network conditions, the fog+edge approach cuts median latency by roughly
half, slashes tail latency by more than two-thirds, elevates deadline-meeting rates above 90% for incident vision, reduces
uplink bandwidth to ~2—3 Mbps per camera, and lowers energy per inference. Statistical tests confirm improvements are
significant with large effect sizes.
For deployment, we recommend (i) staging fog micro-datacenters at fiber or 5G aggregation points, (ii) deploying a DAG-
aware scheduler that ingests both compute and network forecasts, (iii) embracing model families with calibrated early-exit
thresholds, and (iv) prioritizing feature-level upstreaming to keep backhaul manageable. Future work should validate these
results in live pilots, incorporate reinforcement-learning placement policies with safety constraints, and extend the framework

to multimodal sensing (radar, LiIDAR, audio) and cross-jurisdiction coordination. Ultimately, fog computing makes it
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practical to scale trustworthy, low-latency Al across the city—turning data into safer streets, more reliable transit, and

smoother traffic with sustainable resource use.
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