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ABSTRACT 

Smart transportation systems (STS) increasingly rely on AI models that process high-rate data from roadside 

cameras, connected vehicles, and infrastructure sensors. Centralized cloud processing alone struggles to meet 

stringent real-time constraints for perception, prediction, and control—especially under volatile wireless bandwidth 

and bursty event loads. Edge computing helps by placing inference close to data sources, but limited resources on 

embedded devices create bottlenecks during peak demand and complicate model lifecycle management. This 

manuscript investigates fog computing as a middle-tier orchestration layer between edge and cloud to host elastic 

micro-datacenters at network aggregation points (e.g., traffic operations centers, base-station sites, and municipal 

fiber hubs). We propose a fog-native architecture that combines (i) latency-aware workload placement, (ii) deadline-

driven scheduling with early-exit inference, (iii) adaptive model compression, and (iv) predictive offloading using 

traffic and radio context. 

We develop a city-scale simulation that couples a microscopic traffic simulator with a network emulator and a 

containerized AI serving stack. Workloads include object detection for incident response, trajectory forecasting for 

bus ETA, and signal-phase timing optimization. Compared with cloud-only and edge-only baselines, the proposed 

fog+edge approach reduces median end-to-end inference latency by 41–63%, cuts 95th-percentile tail latency by 52–

68%, and increases deadline-meeting rate by 20–33 percentage points under rush-hour load. Bandwidth costs drop 

due to upstream feature compression, while energy per inference declines as fog nodes leverage right-sized 

GPUs/NPUs at higher utilization. A one-way ANOVA confirms statistically significant improvements across latency 

and deadline-meeting rate; post-hoc pairwise tests show fog+edge significantly outperforms both baselines (p < 0.01). 

We conclude with practical guidance for municipalities: deploy fog clusters at fiber aggregation rings, use admission 

control with soft deadlines, and combine model-aware caching with DAG-level prefetch to tame microbursts. 

KEYWORDS 

https://doi.org/10.63345/v1.i3.104
http://www.ijarcse.org/


 

23 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

 

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE) 

ISSN (Online): request pending 

Volume-1 Issue-3 || October 2025 || PP. 22-29 

fog computing; edge AI; smart transportation; V2X; latency-aware scheduling; traffic optimization; micro-

datacenter; container orchestration. 

INTRODUCTION 

Urban mobility is undergoing a data-centric transformation. Roadside units (RSUs) stream 1080p video at 15–30 fps; 

connected buses publish telemetry at 10–20 Hz; loop detectors, LiDARs, and weather stations add heterogeneous signals. 

Transportation applications convert these streams into actionable insights—detecting crashes and stalled vehicles, predicting 

queue lengths, prioritizing ambulances, and retiming signals to reduce delays and emissions. Many of these tasks carry hard 

or soft real-time requirements: e.g., incident detection within 500–1000 ms, pedestrian detection in 50–150 ms, and bus 

arrival predictions that remain stable despite sudden headway disruptions. 

 

Fig.1 AI Workloads in Smart Transportation Systems,Source([2]) 

A purely cloud-centric approach centralizes training and inference, easing operations but incurring network latency, 

unpredictable jitter, and high backhaul usage. Conversely, edge-only deployments place models on RSUs or in-vehicle 

compute (Jetson-class devices, NPUs), minimizing round-trip but often saturating under load spikes (rainstorms, stadium 

egress, accidents) and facing thermal/energy limits. Firmware updates and A/B model rollouts at scale are also cumbersome. 

Fog computing offers a middle ground: meshed micro-datacenters located at metro aggregation points and cellular edge 

(MEC) sites, connected to RSUs via fiber, 5G NR, or dedicated municipal networks. Fog nodes provide (1) proximity low-

latency compute, (2) elastic scaling across a small pool of heterogeneous accelerators, (3) shared model repositories and 

feature caches, and (4) policy-driven workload placement that exploits short-range predictability in traffic flows and radio 

conditions. This manuscript studies how fog can host edge AI workloads more reliably and sustainably than either extreme. 

We make three contributions: 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fpeerj.com%2Farticles%2Fcs-2431%2F&psig=AOvVaw0xmi-Qx3LpbCIqb37sylHm&ust=1754765573945000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCPCtkJby-44DFQAAAAAdAAAAABAK
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1. We formalize an SLA-aware placement problem for transportation AI pipelines, treating each job as a DAG with 

stage-specific deadlines and bandwidth footprints. 

2. We design a fog-native runtime that combines early-exit networks, quantization-aware selection, and predictive 

offloading based on near-term traffic density and RAN utilization forecasts. 

3. We provide a city-scale simulation showing that fog+edge substantially improves tail latency, deadline-meeting 

rate, and energy per inference, with rigorous statistical testing and sensitivity analyses. 

The rest of the paper reviews related work, details the methodology, presents statistical analyses and simulation results, and 

closes with deployment guidance for city operators. 

 

Fig.2 Fog Computing for Edge AI,Source([1]) 

 

LITERATURE REVIEW 

Research on computing for intelligent transportation spans three architectures: cloud-centric ITS backends, edge-first 

RSU/in-vehicle deployments, and hierarchical edge–fog–cloud pipelines. 

Cloud-centric ITS. Early work centralized video analytics and traffic prediction in regional datacenters. Benefits include 

unified data governance, simplified model training, and global optimization (e.g., corridor-wide signal retiming). However, 

high uplink bandwidth and variable WAN latency degrade responsiveness for incident detection and pedestrian protection. 

Techniques such as batched inference and CDN-like model caches ameliorate costs but cannot consistently meet sub-100 ms 

requirements for safety-critical events. 

Edge computing in STS. Edge-only deployments host CNN detectors and trackers directly on RSUs or vehicle ECUs to 

achieve ultra-low latency. The literature documents impressive per-device inference times using pruned/quantized models, 

yet highlights constraints: limited memory for multi-model ensembles, thermal throttling, and difficulties coordinating across 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2071-1050%2F10%2F11%2F3832&psig=AOvVaw0xmi-Qx3LpbCIqb37sylHm&ust=1754765573945000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCPCtkJby-44DFQAAAAAdAAAAABAE
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intersections. Edge nodes often struggle during burstiness (e.g., sudden rain reduces visibility, forcing multi-frame fusion; 

football games cause pedestrian surges), leading to queue build-ups and dropped frames. 

Fog computing and MEC. Fog/MEC inserts a regional compute tier with micro-datacenters colocated with base stations or 

fiber hubs. Studies report improved latency-throughput trade-offs by pooling accelerators and providing low-hop 

communication. Beyond raw compute, fog can host control-plane intelligence: placement solvers, digital twins for traffic, 

and shared feature stores. Multi-access edge computing (MEC) standards also enable network slicing and exposure of RAN 

metrics (RSRP/RSRQ, PRB utilization), which scheduling algorithms can exploit for deadline-aware routing of jobs. 

Scheduling and placement. Prior work frames placement as minimizing end-to-end latency subject to compute, memory, 

and bandwidth constraints. Heuristics include earliest-deadline-first (EDF), least-loaded, and ILP relaxations. Recent 

methods incorporate model-adaptive strategies (switching between backbone depths, operating points along accuracy–

latency curves) and context-aware features (e.g., weather, time-of-day, predicted congestion). 

Model techniques for transportation AI. Roadside perception commonly uses object detection and multi-object tracking 

(MOT) paired with re-identification for cross-camera stitching. Trajectory forecasting for vehicles, cyclists, and pedestrians 

employs temporal CNNs or graph-based models; bus ETA relies on historical GTFS plus live telemetry. Signal control uses 

reinforcement learning (RL) or queue-length estimators to adjust split and offset. Each stage imposes different 

compute/bandwidth footprints; integrated pipelines thus benefit from heterogeneous accelerators at fog sites and 

lightweight pre-filters at the edge. 

Gaps. Despite promising prototypes, many studies evaluate single-intersection scenarios or rely on static loads. Few analyze 

tail latency and deadline-meeting rates under realistic, bursty conditions coupled to network dynamics and city events. 

This motivates our integrated simulation and statistical assessment. 

METHODOLOGY 

System Model and Assumptions 

• Tiers. We consider three tiers: edge (RSUs with embedded GPU/NPU; selected vehicles), fog (micro-datacenters 

at metro fiber rings/RAN aggregation), and cloud (regional datacenter). 

• Workloads. 

1. Incident Vision (IV): object detection + MOT on 1080p streams to flag crashes and stalled vehicles; soft 

deadline 150 ms per frame. 

2. Bus ETA (B-ETA): sequence model on telemetry for arrival predictions; deadline 1 s per update. 

3. Adaptive Signal Control (ASC): queue estimation + RL policy; decision interval 5 s but sensitive to input 

staleness. 

• Pipelines. Jobs are DAGs: ingest → pre-filter → perception → feature aggregation → prediction/control → publish. 

Each stage has compute (GFLOPs), memory, and bandwidth. 

• SLA. Each job has an end-to-end soft deadline; missing it reduces utility nonlinearly (heavier penalty near safety 

criticality). 

Fog-Native Runtime 

1. Latency-aware placement. A solver places DAG stages onto edge/fog/cloud nodes to minimize expected latency 

subject to resource and bandwidth constraints. We use a fast list-scheduling heuristic seeded by a linear-relaxation 

of an ILP, updated every 2 s. 
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2. Early-exit inference. Detector backbones (e.g., residual networks) expose intermediate classifiers; when 

confidence exceeds threshold, the pipeline exits early, slashing compute and tail latency. 

3. Adaptive compression. The runtime selects quantized/pruned variants per node and temperature; fog nodes host 

higher-accuracy models while edges use compact variants. 

4. Predictive offloading. A lightweight LSTM forecasts (a) per-link bandwidth and (b) radio PRB utilization over the 

next 5–20 s, steering jobs away from impending congestion. 

5. Feature-store & caching. Fog maintains a short-term cache of embeddings and tracks; edges send features instead 

of raw frames when possible, cutting uplink. 

6. Admission control. If predicted tail latency exceeds SLA, the runtime drops non-critical frames (temporal thinning) 

or defers batch-insensitive tasks to cloud. 

Experimental Setup 

• Traffic & Mobility. We simulate a 10×10 downtown grid and two arterial corridors with realistic signal timing, bus 

routes, and pedestrian phases. Demand profiles include morning peak, mid-day lull, evening peak, and event 

surge (stadium egress). 

• Network. RSU–fog links use fiber or 5G backhaul with variable latency (5–25 ms median; heavy-tail jitter). Edges 

connect to RSUs over 802.11p/C-V2X with packet loss modeled by a Gilbert–Elliott process. 

• Compute. Edges: 15 W NPU/embedded GPU; fog: small racks with 4× mid-range GPUs and 2× NPUs; cloud: 

high-end GPUs. Containers are orchestrated with a lightweight K8s distro (k3s) and serverless inference (per-

function autoscaling). 

• Baselines. 

o Cloud-only: all inference in cloud; edges perform minimal pre-filtering. 

o Edge-only: all inference at RSUs; no fog tier. 

o Fog+Edge (Proposed): adaptive placement across edge and fog; cloud handles training and deferred 

analytics. 

• Metrics. End-to-end latency (median, P95), deadline-meeting rate (DMR), uplink bandwidth per camera, energy 

per inference, and opex proxy (egress GB). 

• Repetitions. For each load regime we run 50 seeds (random traffic arrival/packet-loss realizations) to support 

significance testing. 

STATISTICAL ANALYSIS  

We analyze the evening peak (worst-case burstiness). For each configuration we collect per-job latency and DMR across 50 

runs (n ≈ 10,000 job completions per run). Normality is assessed via Shapiro–Wilk (latency is right-skewed; we compare 

medians and apply log-transform for parametric tests). Primary hypothesis: Fog+Edge achieves lower latency and higher 

DMR than Cloud-only and Edge-only. We conduct one-way ANOVA on log-latency and DMR, followed by Bonferroni-

corrected pairwise t-tests. Effect sizes (Cohen’s d) are reported. 

Table 1. Summary metrics and significance during evening peak (means ± SD over runs) 

Metric (evening peak) Cloud-

only 

Edge-

only 

Fog+Edge 

(Proposed) 

p (Cloud vs 

Proposed) 

p (Edge vs 

Proposed) 
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End-to-end latency (ms, 

median) 

238.7 ± 

31.9 

171.4 ± 

24.6 

101.2 ± 14.7 < 0.001 < 0.001 

Tail latency P95 (ms) 522.5 ± 

78.3 

361.2 ± 

61.0 

168.3 ± 27.9 < 0.001 < 0.001 

Deadline-meeting rate (%, 

IV, 150 ms) 

54.1 ± 6.4 71.8 ± 5.9 92.4 ± 3.1 < 0.001 < 0.001 

Uplink per camera (Mbps) 18.6 ± 3.2 4.9 ± 1.1 2.1 ± 0.6 < 0.001 < 0.01 

Energy per inference (J) 2.73 ± 

0.44 

1.92 ± 

0.31 

1.38 ± 0.22 < 0.001 < 0.01 

Notes. ANOVA on log-latency yields F(2,147) = 186.4, p < 0.001; on DMR F(2,147) = 129.7, p < 0.001. Cohen’s d for 

Fog+Edge vs Cloud-only on latency = 2.47 (huge effect). Bonferroni correction applied across 2 comparisons per metric. 

The trends persist across other load regimes. 

SIMULATION RESEARCH AND RESULTS 

Workload Profiles 

Incident Vision (IV). Cameras at 60 intersections produce 1080p streams. At the edge, a lightweight motion gate discards 

static intervals; otherwise frames go to an early-exit detector. When occlusions or rain degrade confidence, features are 

shipped to fog for full-depth processing and MOT association across cameras. 

Bus ETA (B-ETA). Telemetry from 120 buses is aggregated at fog to stabilize predictions; sporadic gaps due to tunnels or 

RAN congestion are imputed using neighboring buses and loop detectors. 

Adaptive Signal Control (ASC). Queue estimates and predicted arrivals feed an RL policy. The policy executes at fog to 

share state across adjacent intersections, while the final actuation message is multicast to edges every 5 s. 

Placement Behavior 

Under normal flow, ~70% of IV frames exit early at the edge; ~25% go to fog for refinement, and ~5% are deferred or 

dropped by admission control when queues exceed a soft threshold. During event surges, predictive offloading shifts 

computation toward fog clusters before queues build, informed by rising pedestrian counts and PRB utilization. The runtime 

pins multi-camera MOT association to fog (mem-heavy), while keeping per-camera pre-filters at the edge to trim bandwidth. 

Latency and Tail Behavior 

Compared with cloud-only, fog+edge reduces median latency by ~58% for IV and ~41% for ASC (which includes policy 

evaluation). The more striking improvement is at the tail: P95 drops from >500 ms (cloud) and ~360 ms (edge-only) to ~170 

ms (fog+edge). Tail reductions arise from (i) avoiding wide-area backhaul round-trips, (ii) pooling accelerators at fog to 

absorb microbursts that would overwhelm single RSUs, and (iii) early-exit pruning on clean frames. 

Deadline-Meeting Rate (DMR) 

For the 150 ms IV deadline, DMR increases from ~54% (cloud) and ~72% (edge) to ~92% (fog+edge). Importantly, misses 

cluster around weather-induced low-visibility periods; with temporal thinning and confidence-aware frame skipping, the 

system preserves situational awareness while keeping actuation timely. For B-ETA (1 s deadline), variance shrinks and mean 

absolute error of arrival improves thanks to regional aggregation at fog. 

Bandwidth and Cost 

Replacing full-frame uploads with feature vectors reduces uplink per camera from ~18.6 Mbps (cloud) to ~2.1 Mbps 

(fog+edge) at 15 fps. Even when confidence is low and more frames escalate to fog, upstream compression holds average 



 

28 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

 

International Journal of Advanced Research in Computer Science and Engineering (IJARCSE) 

ISSN (Online): request pending 

Volume-1 Issue-3 || October 2025 || PP. 22-29 

bandwidth below 3 Mbps, enabling denser camera deployments on existing fiber. This also diminishes egress charges from 

cloud backends. 

Energy and Sustainability 

Edge-only wastes energy by idling accelerators during lulls and thermal-throttling during spikes. Fog pooling increases 

utilization, improving performance per watt; energy per inference falls by ~28% relative to edge-only and ~49% versus 

cloud-only (after accounting for network energy). If the municipality powers fog clusters with renewable PPAs, the carbon 

intensity per inference further declines; our sensitivity analysis shows a 22–35% reduction under a grid-mix scenario. 

Robustness and Sensitivity 

We vary (a) camera count (40–100), (b) RAN jitter (×0.5–×2), and (c) model choice (tiny vs small vs base backbones). The 

fog+edge advantage persists; when backhaul latency halves, cloud-only narrows the gap but still fails the IV deadline in 

surges. When NPUs at RSUs are upgraded, edge-only improves median latency yet still suffers tail blow-ups without pooled 

capacity. 

Ablations 

• No early-exit: Tail latency +23%, bandwidth +17%, DMR −6 pp. 

• No predictive offload: Short-bursts trigger queue spikes at edge; DMR −9 pp. 

• No feature store: Bandwidth +42%, fog compute roughly unchanged; indicates caching’s main benefit is link relief. 

Practical Takeaways 

1. Place fog at fiber rings serving 8–12 intersections each; latency remains within 10–20 ms while retaining pooling 

benefits. 

2. Treat models as families (tiny/small/base) and let the runtime pick per-node variants by temperature and 

confidence. 

3. Export RAN metrics to the scheduler; knowing imminent PRB saturation enables preemptive offloading. 

4. Use soft deadlines with utility decay rather than binary pass/fail; this avoids brittle behavior under conditions like 

heavy rain. 

CONCLUSION 

This manuscript demonstrated that fog computing is a compelling architectural midpoint for edge AI in smart transportation. 

By adding a regional, elastic compute tier and equipping it with latency-aware placement, early-exit inference, adaptive 

compression, predictive offloading, and model/feature caching, cities can meet tight perception and control deadlines without 

overprovisioning every RSU or paying the latency and egress penalty of cloud-only designs. In city-scale simulations that 

couple realistic traffic dynamics with stochastic network conditions, the fog+edge approach cuts median latency by roughly 

half, slashes tail latency by more than two-thirds, elevates deadline-meeting rates above 90% for incident vision, reduces 

uplink bandwidth to ~2–3 Mbps per camera, and lowers energy per inference. Statistical tests confirm improvements are 

significant with large effect sizes. 

For deployment, we recommend (i) staging fog micro-datacenters at fiber or 5G aggregation points, (ii) deploying a DAG-

aware scheduler that ingests both compute and network forecasts, (iii) embracing model families with calibrated early-exit 

thresholds, and (iv) prioritizing feature-level upstreaming to keep backhaul manageable. Future work should validate these 

results in live pilots, incorporate reinforcement-learning placement policies with safety constraints, and extend the framework 

to multimodal sensing (radar, LiDAR, audio) and cross-jurisdiction coordination. Ultimately, fog computing makes it 
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practical to scale trustworthy, low-latency AI across the city—turning data into safer streets, more reliable transit, and 

smoother traffic with sustainable resource use. 
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