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ABSTRACT

Reliable, high-resolution air quality information is essential for urban planning, public health alerts, and
environmental governance. Yet conventional monitoring networks—based on a few expensive reference-grade
analyzers—lack spatial granularity, while large fleets of low-cost sensors suffer from drift, cross-sensitivity,
connectivity constraints, and cloud-processing latency. This manuscript proposes and evaluates an edge-centric
architecture for real-time air quality monitoring that fuses low-cost sensing with gateway-level analytics. Each edge
IoT gateway locally aggregates streams from particulate (PM2.5/PM10) and gas sensors (NOz, Os, CO, VOCs),
performs multi-variate calibration with temperature/humidity compensation, filters anomalies, computes short-term
Air Quality Index (AQI) values, compresses and prioritizes data, and synchronizes with cloud services for model

updates and long-term storage.
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Fig.1 Real-Time Air Quality Monitoring,Source([1])
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We detail the hardware/software stack, communication protocols (LoORaWAN/NB-IoT/MQTT), security hardening
(secure boot, mTLS), and power-aware scheduling. A field deployment with 60 nodes over 25 km? and a discrete-event
simulation demonstrate that edge analytics reduce mean absolute error for PM2.5 from 8.7 to 3.2 pg/m? (vs. a co-
located reference monitor), cut p95 latency from 14.8 s to 2.6 s, and shrink uplink volume by 62% without sacrificing
coverage. Statistical analysis shows improved R?, lower bias, higher uptime, and reduced packet loss compared to
cloud-only baselines. The results validate edge gateways as a cost-effective and scalable substrate for real-time
environmental intelligence, with implications for hyperlocal mapping, personal exposure analytics, and municipal
alerting systems.
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INTRODUCTION

Air pollution remains one of the leading environmental risk factors for morbidity and mortality. Municipalities, campuses,
and industrial operators increasingly demand timely, high-resolution air quality information to guide actions—dynamic
traffic restrictions, construction scheduling, outdoor event planning, or individual exposure avoidance. Traditional reference-
grade monitoring stations provide highly accurate measurements but are expensive and sparse; consequently, they cannot
capture neighborhood-level variations driven by micro-meteorology, land use, and traffic patterns. Conversely, low-cost
sensors enable dense deployments but raise concerns regarding accuracy, drift over time, and susceptibility to temperature
and humidity.

Cloud-first IoT pipelines—where raw data are transmitted for centralized processing—introduce avoidable latency,
communication costs, and fragility during connectivity interruptions. They also raise privacy/security risks by moving all
raw data off-premises. Edge computing offers a middle path: move computation closer to the sensors, at site gateways capable
of preprocessing, quality control, calibration, event detection, and intelligent backhaul. By closing the loop at the edge,
systems can issue real-time alerts, reduce bandwidth via summary statistics and adaptive sampling, and continue operating
autonomously when backhaul is degraded.

This study presents a full stack, from sensor selection and calibration modeling to edge gateway orchestration and network
protocols. We design, implement, and evaluate an edge-enabled monitoring system for particulate and gaseous pollutants
that (i) performs robust local calibration with temperature/humidity compensation, (ii) applies outlier detection and
denoising, (iii) computes rolling AQI and triggers local alerts, (iv) compresses and prioritizes traffic, and (v) periodically
syncs with the cloud for model updates. We complement a real deployment with simulation to explore scaling properties

(node density, duty cycle, contention) and to quantify trade-offs among accuracy, latency, energy, and reliability.
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Fig.2 Air Quality Monitoring Using Edge loT Gateways,Source([2])
LITERATURE REVIEW

Dense low-cost sensor networks have been studied to overcome the sparsity of regulatory stations. Optical particle counters
(e.g., PMS5003, SDS011) estimate PM via light scattering; their readings depend on particle size distribution, humidity-
induced hygroscopic growth, and sensor aging. Electrochemical cells (for NOz, Os, CO) and metal-oxide sensors (VOCs)
are sensitive to temperature, humidity, and interfering gases. The literature converges on multi-point or multi-variable
calibration—Ilinear or non-linear regression, partial least squares, random forests, and neural networks—often incorporating
temperature and relative humidity as covariates. Transfer learning and domain adaptation have also been proposed to port
calibrations across sites and seasons, while Kalman filtering and Bayesian approaches address temporal dynamics and
uncertainty.

Fog/edge architectures in environmental sensing emphasize local analytics to curb bandwidth, reduce latency, and increase
resilience. Common building blocks include MQTT/CoAP brokers, containerized analytics (e.g., Docker/K3s), and OTA
updates. Prior works have shown that moving quality control, change-point detection, and simple ML to the gateway
significantly lowers time-to-insight and backhaul costs. Still, many deployments either (i) focus on a single pollutant, (ii)
calibrate only in the cloud, or (iii) neglect operational aspects—failover, security, and power budgeting—that determine
viability at scale.

Our contribution is a holistic, production-oriented design: a heterogeneous sensor fleet with edge gateways executing
calibration and AQI computation in real time, backed by a cloud service that provides model retraining and fleet
orchestration. We quantify improvements not only in accuracy metrics but also in latency, uptime, packet loss, and energy—

operational levers that earlier studies often report incompletely.

METHODOLOGY
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System Architecture
The architecture comprises three layers:

1. Sensor Layer: Each node integrates (a) a particulate sensor (PM1/PM2.5/PM10), (b) gas sensors (NOz, Os, CO,
VOC), and (c) a met sensor (temperature, RH, pressure). A microcontroller (ARM Cortex-M4F) handles sampling,
timestamping, and local buffering on FRAM/SD.

2. Edge Gateway Layer: Gateways (ARM64 SBCs with 2—4 GB RAM) aggregate sensor traffic via LoRaWAN Class
A or BLE, perform analytics, and backhaul via Ethernet/LTE/Cat-M1/NB-IoT. Each runs a lightweight Kubernetes
(K3s) stack with containers for ingest, calibration, AQI, storage, and MQTT broker.

3. Cloud/Control Layer: A control plane (container registry, model store, OTA service) periodically ships updated
models and configurations; a time-series store retains aggregates (1-min/5-min) and raw samples on exception.

Sensing and Sampling

e Particulates: Optical counter at 1 Hz, 10-s median to suppress short spikes.

e  Gases: Electrochemical cells sampled at 0.5—1 Hz, averaged over 30 s.

e Environmental: Temperature/RH/pressure sampled at 1 Hz; RH is used for humidity compensation.

e Clocking: Gateways run NTP/PTP; sensor nodes apply gateway-distributed time beacons to correct drift.

Edge Data Pipeline

1. Ingest & Synchronization: Sensor packets (CBOR/Protobuf) arrive over LoRaWAN (spread factors 7-12) or BLE;
gateway assigns sequence IDs and reconciles missing frames.

2. Quality Control: Range checks, stuck-value detection, and Hampel filtering (window 11) remove outliers while
preserving local peaks.

3. Calibration/Compensation: For each pollutant, the gateway applies a multi-variate model trained against a co-
located reference analyzer:

yM=R0+P1xt+P2Tt+HR3RHt+P4xt-RHt+B5Tt2+et\hat{y} t=\beta O+\beta 1 x t+\beta 2 T t+\beta 3 RH t+\beta 4
x_t\cdot RH_t+\beta 5 T t"2+\epsilon_t

where xtx_t is the raw sensor reading, TtT t temperature, RHtRH_t relative humidity. To address heteroscedasticity, we fit
weighted least squares with weights wt=1/6"2(xt)w_t = 1/\hat{\sigma}"2(x_t). A one-step Kalman update smooths the
output:

yt=y“t+Kt(zt—y"t),Kt=Pt—Pt—+Ry t=\hat{y} t+ K t(z_t-\hat{y} t),\quad K t=\frac{P*- t} {P*- t+ R}

with ztz_t as prior and RR inferred from validation residuals.

4. Drift and Cross-Sensitivity Handling: A lightweight ADWIN change-point detector monitors residuals; detected drift
triggers (a) local coefficient re-weighting via ridge-style updates or (b) a request for cloud re-training when persistent.
5. AQI Computation & Alerts: The gateway computes rolling 1-min and 15-min pollutant indices and the composite AQI
using breakpoint mapping; local alerts are issued via MQTT topics to signage/mobile apps when thresholds are exceeded.
6. Compression & Prioritization: Summaries (means, p95, variance) and events transmit immediately; raw packets are
batched and compressed (LZ4) or dropped if  unchanged beyond a  tolerance band.
7. Storage & Sync: A ring buffer retains 48 h of raw data; on backhaul restoration the gateway uploads missing intervals
with exactly-once semantics (idempotent sequence IDs).

8. Security: Secure boot on gateways; TPM-anchored device identity; mutual TLS (mTLS) for MQTT; signed OTA artifacts;

role-based access for maintenance.
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9. Power Management: Sensor nodes use duty-cycling; gateways schedule high-power tasks (e.g., model retraining) during
grid availability; solar-assisted sites use MPPT controllers and supercapacitor buffers.
Deployment and Evaluation Design
e  Sites: Mixed urban and peri-urban micro-environments—traffic corridors, residential zones, school campuses, and
a roadside near construction.
¢  Ground Truth: One reference-grade station per cluster (beta attenuation monitor for PM; chemiluminescence/UV
photometric analyzers for gases).
e (Calibration & Validation: Initial co-location for 10 days, then distributed deployment; validation uses 5-fold
blocked cross-validation (by day) to account for autocorrelation.
e Baselines:
o No-calibration baseline: raw readings only, simple averaging at the gateway.
o Cloud-only calibration: raw data streamed to cloud for compensation and AQI; gateway limited to
buffering.
o Proposed edge: full pipeline on gateway with cloud providing slow-timescale updates.
e  Metrics: MAE, RMSE, bias, R? vs reference; coverage within + defined thresholds; p95 latency (sensor—alert),
packet loss, data reduction, energy/day, and uptime.
STATISTICAL ANALYSIS

Table 1. Summary metrics across 4 weeks (60 nodes, 25 km?). Best values per row in bold.

Metric No-Calibration Cloud-Only Proposed Edge
Baseline Calibration Calibration
PM2.5 MAE (pg/m?) 8.7 4.1 3.2
PM2.5 RMSE (pg/m?) 12.4 7.3 5.6
PM2.5 Bias (ug/m?) +4.9 +1.1 +0.6
PM2.5 R? 0.62 0.84 0.89
NO: MAE (ppb) 6.1 3.4 2.7
Os MAE (ppb) 7.8 4.6 3.9
Coverage within £10 pg/m* PM2.5 58 81 88
(%)
p95 Latency sensor—alert (s) 14.8 8.9 2.6
Uplink Data Reduction vs Raw (%) 0 41 62
Packet Loss (%) 7.4 3.5 2.1
Gateway Energy / day (Wh) 19.3 20.2 17.1
Uptime (%) 95.1 97.2 98.7
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Fig.3 Statistical Analysis

Interpretation. Relative to the no-calibration baseline, the edge pipeline reduces PM2.5 MAE by ~63%, increases explained
variance (R?) by 0.27, and brings bias close to zero. Compared with cloud-only calibration, edge execution yields lower
latency (local alerts without round trips), better data reduction via on-gateway summarization, and slightly higher uptime
due to autonomy during outages. Energy/day decreases because the gateway avoids constant high-duty backhaul and
performs compute in short bursts tied to aggregation windows.
SIMULATION RESEARCH AND RESULT
Simulation Goals
While the field trial validates absolute performance, simulation allows controlled stress-testing at scale: (i) What node
densities saturate the LoORaWAN MAC given our duty cycles? (ii) How do adaptive sampling and event-triggered bursts
affect contention and loss? (iii) What latency/energy trade-offs arise with different backhaul technologies?
Simulator and Model
We built a discrete-event simulation approximating LoRaWAN Class A behavior with six channels (125 kHz) and spreading
factors (SF7—SF12) assigned by ADR heuristics. Traffic per node is a superposition of: periodic summaries (every 60 s), raw
windows on anomalies (5% of windows), and heartbeat pings (every 10 min). Gateways execute priority queuing—alerts >
summaries > raw—and apply compression ratios derived from field logs (median 2.6%). Backhaul choices per site are LTE
(mean RTT 60 ms) or NB-IoT (mean RTT 700 ms) with realistic jitter. Power models include radio TX/RX currents, MCU
sleep, and SBC idle/active states.
Scenarios

e D1 (Urban Dense): 250 nodes per gateway, average payload 80 bytes @60 s, anomaly bursts at peak traffic hours

(08:00-10:00, 18:00-20:00).

e D2 (Balanced): 120 nodes per gateway, payload 80 bytes, anomaly 3%.

o D3 (Sparse Rural): 40 nodes per gateway, payload 60 bytes, anomaly 2%, more SF11—12 links.

e Sampling Strategies: Fixed (60 s), Adaptive (30—-120 s based on variance), Event-Triggered (10 s for 2 min upon

threshold exceedance).

Key Results
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1. Uplink Reliability: With fixed sampling, D1 experiences 6—8% collision-induced loss at peak. Adaptive sampling
cuts airtime by ~28%, reducing collisions to ~3.2%. Event-triggered bursts briefly raise loss to 4.5%, but priority
queuing preserves alerts (99.2% delivered within 5 s at the gateway).

2. Latency: Edge alerts (MQTT local) are decoupled from backhaul. Even under NB-IoT backhaul, local alerting
maintains p95 <3 s (vs 10—12 s when relying on cloud round-trip).

3. Energy: Adaptive sampling reduces node TX energy by 24-31% depending on SF; gateway energy climbs
negligibly during bursts because compute is dominated by short calibration inference (few milliseconds on
ARM64).

4. Scalability: A single gateway with duty-cycle management and ADR sustains 180-220 nodes at 60 s intervals with
loss < 3% (D2); beyond that, either sampling must adapt or an additional gateway is recommended.

5. Accuracy Under Drift: Injecting a 10% sensitivity loss after two weeks, the edge drift detector (ADWIN) flags a
regime change within 90 min (median), triggering incremental coefficient updates that limit MAE growth to < 1
pg/m?. Without drift handling (cloud-only weekly retraining), MAE rises by 3—4 pg/m? until the next scheduled
update.

Discussion

Simulation confirms that edge analytics mitigate congestion and delay by (i) compressing and prioritizing traffic before air-
time contention and (ii) issuing alerts locally. The architecture remains robust under different backhauls because decision-
critical logic is inside the gateway. Most importantly, the ability to detect and correct drift in situ avoids prolonged accuracy
degradation between centralized retraining cycles.

CONCLUSION

This work demonstrates that edge IoT gateways materially improve the timeliness, reliability, and accuracy of dense air
quality monitoring networks. By moving calibration, quality control, AQI computation, and alerting to the gateway, the
system reduces mean absolute errors for key pollutants (e.g., PM2.5 MAE from 8.7 to 3.2 pg/m?), minimizes bias, and
increases the share of readings within operational thresholds. Real-time local alerts cut p95 latency to ~2.6 s, enabling
responsive public messaging and automated controls. Intelligent compression and summarization lower uplink traffic by
62% —shrinking costs and enhancing resilience when backhaul is constrained—while autonomy improves uptime and curbs
packet loss.

From an engineering standpoint, several design choices prove pivotal: (i) multi-variate calibration with temperature/humidity
compensation and a lightweight Kalman update; (ii) residual-based drift detection with gateway-side incremental updates;
(iii) protocol selection and adaptive sampling to manage RF airtime; and (iv) security-first operations—secure boot, mTLS,
signed OTA—that make large-scale deployments maintainable and trustworthy. The combination of co-location-based initial
calibration, blocked cross-validation to temper autocorrelation, and operational metrics beyond pure accuracy provides a
balanced evaluation of real-world viability.

Limitations include reliance on at least one reference station per cluster for ground truth, potential seasonal drift requiring
periodic re-alignment, and the challenge of cross-sensitivity in certain electrochemical sensors during extreme weather.
Future work will explore (a) semi-supervised and federated calibration that leverages fleet-wide patterns without shipping
raw data, (b) physics-informed neural surrogates that encode hygroscopic growth behavior, (c) on-gateway uncertainty
quantification to communicate confidence with each AQI value, and (d) integration with mobile exposure analytics and

citizen-science apps for participatory sensing.
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In summary, edge-first air quality monitoring reconciles the scalability of low-cost sensing with the rigor and
responsiveness demanded by public health use cases. The architecture and results presented here offer a practical blueprint
for municipalities, campuses, and industries seeking to deploy real-time, trustworthy environmental intelligence at city

scale—today.
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