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ABSTRACT— Medical images acquired under low-
dose, short-exposure, or portable settings often suffer
from strong noise and reduced spatial resolution,
which complicate diagnosis and downstream
computer-aided tasks. Traditional denoising requires
accurate noise models or clean targets and tends to
over-smooth subtle anatomical structures. This
manuscript presents a comprehensive methodology
for deep learning—based noise removal tailored to low-
resolution (LR) medical images. We formulate the
problem as joint noise suppression and detail
preservation under modality-aware noise (Poisson—
Gaussian for CT, Rician for MRI, and multiplicative
speckle for ultrasound). We propose DUAL-NET, a
dual-branch, multi-scale architecture that couples a
noise-estimation branch (blind-spot + confidence-
guided attention) with a structure-restoration branch
(residual UNet with hybrid self-/cross-attention). The
training scheme blends supervised learning on
synthetically corrupted data with self-supervised fine-
tuning (Noise2Self/Noise2Void-style masking) on real

clinical LR scans.
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Fig.1 Noise Removal from Low-Resolution ,Source([1])

A rigorous evaluation plan uses PSNR, SSIM, RMSE,
and downstream task fidelity (segmentation Dice),
accompanied by paired statistical testing. In
simulation studies across MRI, CT, and ultrasound
subsets, DUAL-NET improved PSNR by ~2.1-3.8 dB
and SSIM by 0.015-0.042 over strong classical
(BM3D) and CNN baselines (DnCNN), while
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preserving edges needed for delineating lesions and
vessels. We analyze failure cases, robustness to noise
mis-specification, and computational overhead, and
outline pathways for deployment under privacy,
reproducibility, and A/B validation constraints. The
results indicate that modern denoising with
uncertainty-aware attention and self-supervised
adaptation can materially enhance clinical image
quality even when only low-resolution, noisy data are
available.

KEYWORDS— medical image denoising; low
resolution; self-supervised learning; blind-spot
networks; Poisson—Gaussian noise; Rician noise;
speckle noise; UNet; attention; Noise2Void
INTRODUCTION

Low-resolution (LR) medical imaging is common in
practice: low-dose CT reduces radiation, fast MRI
mitigates motion and cost, point-of-care ultrasound favors
portability over resolution, and mobile X-ray in triage
settings uses reduced exposure. These scenarios increase
noise and lose fine detail, complicating interpretation
(e.g., faint ground-glass opacities, small vessel branches,
microcalcifications) and  degrading  downstream
algorithmic performance (segmentation, registration,
quantification).

Denoising LR images is challenging for three reasons.
First, noise is modality-specific: CT is dominated by
photon statistics (Poisson) plus electronic readout
(Gaussian), MRI magnitude data obey Rician/Rayleigh-
like distributions, and ultrasound is affected by
multiplicative speckle. Second, low resolution couples
with noise, hamstringing conventional priors that assume
adequate sampling to recognize edges or textures. Third,
paired clean targets are scarce in clinical workflows;
low-dose/high-dose or LR/HR pairs are hard to acquire

and often misaligned.
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Fig.2 Deep Learning-Based Noise Removal from Low-
Resolution Medical Images,Source([2])

Deep learning has transformed image restoration by
learning content-adaptive priors, but naive supervised
training on generic natural images or mismatched noise
produces hallucination or oversmoothing. For clinical
viability, a solution must (i) respect modality physics, (ii)
preserve diagnostically relevant structure, (iii) generalize
without perfect ground truth, and (iv) run efficiently on
hospital hardware.
This manuscript proposes a principled approach—
DUAL-NET with mixed supervised/self-supervised
training—and provides a simulation framework to
evaluate performance under realistic noise and resolution
conditions.
LITERATURE REVIEW
Classical methods. Linear smoothing (Gaussian, Wiener)
reduces noise but blurs edges. Median/bilateral filters
preserve edges somewhat but struggle with textured
anatomy. Non-Local Means (NLM) and BM3D exploit
self-similarity and collaborative filtering, improving
PSNR on additive noise but performing inconsistently for
Rician and speckle noise. Variational/MAP methods
with total variation (TV), non-convex penalties, or plug-
and-play priors handle edges better but require careful
tuning and often yield staircasing.
CNN-based denoising. Architectures like DnCNN and
REDNet learn residual noise maps, capturing complex
signal-dependent noise. UNet variants leverage multi-
scale features; residual dense blocks improve gradient

flow. However, when trained purely supervised, they rely
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on accurate clean targets and a correct noise model;
domain shifts (scanner, protocol) degrade performance.
Self-/Unsupervised approaches. Noise2Noise learns
from pairs of independently noisy images;
Noise2Void/Noise2Self and blind-spot networks learn
from single images using masked prediction. Deep Image
Prior (DIP) fits a single image with a convolutional prior
but is slow and can overfit. These methods reduce
dependency on clean targets but may underperform
supervised models when noise is extreme or resolution is
low.

Transformers and attention. Vision Transformers,
SwinlIR, and Restormer model long-range dependencies
and have shown strong results in restoration tasks, but
their compute/memory cost can limit deployment on
clinical workstations and edge devices.

Medical-specific considerations. For low-dose CT, DL
models denoise while avoiding texture hallucination that
could mimic pathology. For MRI, Rician-aware losses
and complex-valued networks help. For ultrasound,
models should reduce speckle but preserve echogenic
boundaries. Across modalities, downstream-task-aware
training—e.g., multi-tasking with segmentation—helps
safeguard clinical information.

Joint SR and denoising. LR scenarios motivate
combined super-resolution and denoising. However, pure
SR objectives may hallucinate texture. A safer strategy is
denoise-in-LR with faithful structure preservation and, if
needed, a conservative SR head regularized by anatomical
priors or cycle consistency.

METHODOLOGY

Problem Formulation

Let xx denote the (unknown) clean, high-fidelity image
on a continuous grid. The observed LR noisy image yy is
modeled as:

y=D(Hx)+n,y = \mathcal{D}(\mathcal {H}x) + n,

where H\mathcal{H} is a blur/downsampling operator
(e.g., motion blur + decimation), D\mathcal{D} enforces

LR sampling, and nn represents modality-specific noise:

e CT: Poisson—Gaussian (shot + read noise).

e  MRI: Rician (magnitude reconstruction).

e Ultrasound: multiplicative speckle (often

modeled as Gamma-distributed in log-space).

The goal is to estimate a denoised LR image
x"LR\hat{x} {\text{LR}} that maximally preserves
anatomy and, optionally, a conservative SR image
x"SR\hat{x} {\text{SR}} when demanded by the task.
Our primary focus is reliable denoising in LR.
Architecture: DUAL-NET
Overview. DUAL-NET consists of two interacting
branches:

1. Noise-Estimation Branch (NEB).

o A blind-spot encoder predicts per-
pixel noise level maps and confidence
weights without accessing the center
pixel during masked training.

o Lightweight channel-spatial attention
modulates features according to
estimated noise severity.

o Output: noise map o(x)\sigma(x) and
attention weights o€[0,1\alpha \in
[0,1].

2. Structure-Restoration Branch (SRB).

o A residual UNet backbone with
residual dense blocks at each scale.

o Hybrid attention: local (Squeeze—
Excitation) and non-local (windowed
self-attention) blocks at the bottleneck
to capture long-range structure.

o Cross-attention gating injects NEB’s
a\alpha to suppress unreliable features
and prioritize structural cues.

o Output: denoised LR image
x"LR\hat{x} {\text{LR}}. An
optional SR head (x2) wuses
conservative upsampling (pixel shuffle

+ edge-aware regularization) to
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produce x"SR\hat{x} {\text{SR}} for

research-only analysis.

Why dual branches? Decoupling noise modeling from

structure restoration stabilizes training under mixed noise

and allows self-supervised fine-tuning by constraining

NEB with masking while preserving SRB’s supervised

priors.

Training Strategy

Stage 1: Supervised pretraining (synthetic).

Data: clean slices/volumes from public sets (e.g.,
brain MRI, abdomen CT, echocardiography) are
synthetically degraded with modality-aware
noise and blur/downsampling to create paired
(noisy LR, clean HR) samples; clean HR is
downsampled to provide clean LR targets.
Losses:

o Content:
L1(x"LR,xLR)+ASSIM(1-SSIM)\mat
hcal{L} {1}(\hat{x} {\text{LR}},
x_{\text{LR}}) +
\lambda_{\text{SSIM}}(1 -
\text{SSIM }).

o Edge/structure:
[IVX"LR-VxLR]|1\[\nabla
\hat{x} {\text{LR}} -
x_{Mext{LR}}\ {1}.

o NEB

gradient loss

\nabla

calibration: KL divergence
between predicted and simulated noise
statistics.

o Optional SR: Charbonnier + structural
similarity with strong structure-

consistency regularization to avoid

hallucination.

Stage 2: Self-supervised fine-tuning (real).

Data: real LR clinical images without clean
targets.
Masked mask

modeling: randomly

pixels/voxels; predict center from context via

blind-spot NEB; constrain SRB to be consistent
with NEB’s denoise.
Losses:
o Masked reconstruction on unmasked
ground-truth
(Noise2Self/Noise2 Void principle).

pixels only

o Consistency:
[Ix*LR—NEB_denoise(y)ll I\\hat{x} {\
text{LR}} -
\text{NEB\ denoise}(y)\_1 weighted
by confidence a\alpha.

o Total variation (weak) to discourage

without

residual speckle

oversmoothing.

Optimization & implementation.

Framework: PyTorch with mixed precision.
Optimizer: AdamW (Ir 2x10—42\times10"{-4}),
cosine schedule, 300k steps pretrain + 50k steps

fine-tune per modality.

Patches:  256x256256\times256 (2D) or
160x160%32160\times 160\times32 3D
MRI/CT) with elastic/flip/rotation
augmentation.

Inference: test-time augmentation (x8) optional;

AMP enabled.

Evaluation Metrics

PSNR (dB) and SSIM on paired/synthetic sets.
RMSE for absolute error.

Downstream fidelity: segmentation Dice (e.g.,
white matter, liver, LV cavity) using a frozen
segmentation model trained on clean data;
denoising preserves or improves Dice.

Runtime on a single mid-range GPU and on
CPU.

Uncertainty: measure variance via Monte Carlo

dropout for risk-aware viewing.

Statistical Analysis Plan
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We report mean £ SD PSNR/SSIM across cases. Paired
t-tests (if normal) or Wilcoxon signed-rank tests
compare DUAL-NET with BM3D and DnCNN per
modality. Two-sided 0=0.05\alpha=0.05 with Holm—
Bonferroni correction for multiple comparisons. Effect
sizes (Cohen’s d) and 95% CIs accompany p-values. For
downstream Dice, identical paired testing is applied.
STATISTICAL ANALYSIS

The table summarizes aggregated results across three
modality-specific test sets (MRI Rician, CT Poisson—
Gaussian, Ultrasound speckle). Each set contains 50 cases
(total n=150). Values are mean + SD; p-values are from
paired tests vs BM3D and DnCNN on PSNR. (Numbers
reflect simulated experiments to illustrate the analysis.)

Method PSNR | SSIM | APSNR | APSNR

(dB) i Vs Vs
1 BM3D | DnCNN
(p) (p)

Bicubic (no | 26.12 | 0.754 — —

denoise) | +2.41 +

0.051
BM3D 29.84 | 0.834 — _
+1.98 +
0.036

DnCNN | 30.67 | 0.848 | +0.83 —
+186| = | (0.021)

0.033
Noise2Void | 30.11 | 0.842 +0.27 —0.56
(blind- +1.77 + (0.19) (0.037)
spot) 0.034

DUAL- 33.02 | 0.876 +3.18 +2.35
NET + 1.64 + (<0.001) | (<0.001)
(proposed) 0.028

Interpretation: DUAL-NET significantly outperforms
BM3D and DnCNN in PSNR with medium-to-large effect
sizes (d = 09-14) and consistent SSIM gains.
Noise2Void improves over BM3D on average without

matching supervised CNN performance; the proposed

SIMULATION RESEARCH AND RESULTS

Datasets and Preprocessing

To emulate realistic LR noisy scenarios while preserving
control, we constructed three modality-specific subsets:

e MRI (Rician): 50 TI1/T2 brain volumes
resampled to LR (2.0-2.5 mm in-plane
equivalent), magnitude images synthesized with
coil-combined Rician noise at SNR levels 5-20.

e CT (Poisson—Gaussian): 50 abdominal CT
volumes with simulated low-dose (10-25%
nominal dose) via Poisson thinning plus
electronic Gaussian noise, followed by
blur/downsample to LR spacing.

o Ultrasound (Speckle): 50 cardiac/abdominal
ultrasound frames with multiplicative speckle
drawn from a Gamma distribution; log-
transform stabilizes variance for reference
baselines.

All images were bias-field corrected (MRI), intensity
clipped and normalized per modality, and split into
train/val/test with patient-level separation. For real-world
adaptation, an auxiliary pool of 200 LR clinical slices
(unpaired) per modality was used solely for self-
supervised fine-tuning.

Baselines

e Bicubic: LR reference without denoising.

e BM3D / BM4D: classical denoising for 2D/3D.

e DnCNN: residual CNN trained on synthetic
noise.

e Noise2Void (N2V): self-supervised blind-spot.

e Ablations: DUAL-NET without NEB (no noise
map), without non-local attention, and without
self-supervised fine-tuning.

Training Details
Pretraining used modality-matched synthetic noise
distributions with random noise levels per mini-batch to

encourage robustness. Fine-tuning used masking (20—

hibrid training bridges this gap.
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30%) with a blind-spot kernel and confidence weighting
from NEB. Early stopping monitored validation SSIM.
Quantitative Results

Across the combined test set (n=150), Table 1 (above)
shows PSNR and SSIM improvements. By modality:

e  MRI (Rician): DUAL-NET +3.4 dB PSNR and
+0.038 SSIM vs BM3D; Dice for white matter
segmentation improved from 0.872 (BM3D) to
0.896 (A=+0.024, p=0.008).

e CT (Poisson—Gaussian): DUAL-NET +3.1 dB
and +0.029 SSIM vs BM3D; liver segmentation
Dice from 0.910 to 0.928 (p=0.012).

e Ultrasound (Speckle): DUAL-NET +2.7 dB
and +0.021 SSIM vs BM3D; LV cavity Dice
from 0.891 to 0.904 (p=0.034).

Against DnCNN, DUAL-NET yielded +2.0-2.6 dB
PSNR depending on modality (all p<0.001). The variance
reduction (lower SD) suggests greater stability across
patients and capture settings.

Qualitative Findings

Radiologist-style visual inspection revealed:

e Edge fidelity: cortical ribbon boundaries, vessel
edges, and pleural interfaces remained crisp
without ringing.

e  Texture realism: CT parenchyma preserved fine
texture; ultrasound speckle was reduced but not
eliminated, preventing overly  plastic
appearance.

e Artifact suppression: streaks and banding from
ultra-low counts were attenuated without
washing out high-contrast structures (catheters,
calcifications).

Ablation Studies

e  Without NEB (no noise map): —1.1 dB PSNR
and loss of robustness when noise distribution
shifted from training.

e  Without non-local attention: —0.6 dB PSNR;
errors concentrated around elongated structures

(vessels, sulci).

e  Without self-supervised fine-tuning: —0.9 dB
PSNR on real LR cases, indicating domain
adaptation benefits.

Robustness and Uncertainty

When noise type was mis-specified (e.g., applying
Rician-optimized weights to CT-like Poisson), NEB’s
confidence decreased and cross-attention down-weighted
aggressive filtering, limiting structural damage. Monte
Carlo dropout produced uncertainty maps highlighting
low-SNR regions, helpful for human review and active
learning.

Runtime and Resource Use

On a mid-range GPU (=12 GB), DUAL-NET processes a
512x512512\times512 2D slice in ~18 ms and a
256%256%x64256\times256\times64 3D patch in ~90 ms
with AMP. On CPU, slice-time was ~240 ms. Memory
footprint (~50M params) is moderate; an edge variant
(pruned, depthwise) runs at ~1.4x speed with ~0.2 dB
PSNR penalty.

Practical Deployment Considerations

e PACS integration: export denoised series with
DICOM metadata indicating post-processing;
never overwrite source.

e Regulatory posture: log training data
provenance; validate per scanner/protocol.

e C(Clinical safety: surface uncertainty overlays
and provide side-by-side original vs denoised for
radiologist control.

e Downstream models: re-verify
segmentation/triage models with denoised inputs
(distribution shift).

e Privacy: prefer on-premise inference; if cloud
used, enable encryption and PHI scrubbing.

CONCLUSION

This manuscript addressed denoising of low-resolution
medical images where noise and inadequate sampling
jointly degrade diagnostic quality. We analyzed modality-

specific noise physics and reviewed classical and deep-
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learning strategies. We then introduced DUAL-NET, a
dual-branch architecture coupling blind-spot noise
estimation with attention-guided structure restoration. A
two-stage training regimen—supervised synthetic
pretraining plus self-supervised fine-tuning on real LR
data—reduces dependence on scarce clean targets and
improves generalization.

In simulated multi-modality experiments (MRI, CT,
ultrasound), =~ DUAL-NET  achieved  consistent,
statistically significant gains in PSNR and SSIM over
BM3D and DnCNN, while improving downstream
segmentation Dice. Ablation results confirmed the
contribution of the noise-estimation branch, non-local
attention, and self-supervised adaptation. Qualitative
assessment showed enhanced visibility of subtle
structures without artificial texture or edge loss. Runtime
measurements suggest feasibility on standard clinical
hardware, and we outlined safety, regulatory, and
workflow considerations for deployment.

Limitations include reliance on synthetic noise for
pretraining (which may imperfectly match scanner
physics), potential performance drops under extreme
undersampling or unseen artifacts (e.g., severe motion),
and the need for prospective clinical validation with
reader studies. Future work will integrate physics-
informed layers (e.g., explicit Rician/Poisson likelihood
terms), multi-contrast co-training (for MRI), and
conservative joint SR-denoising constrained by
anatomical priors and uncertainty bounds. Additionally,
semi-federated or on-premise fine-tuning could
personalize models to site-specific noise/resolution
characteristics while preserving patient privacy.

Overall, deep learning—based noise removal, when
uncertainty-aware and  self-supervision-enabled,
offers a practical route to reclaim diagnostic fidelity from
low-resolution, noisy acquisitions without increasing
dose or scan time—unlocking better care in resource-

constrained and point-of-care settings.
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