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ABSTRACT— Medical images acquired under low-

dose, short-exposure, or portable settings often suffer 

from strong noise and reduced spatial resolution, 

which complicate diagnosis and downstream 

computer-aided tasks. Traditional denoising requires 

accurate noise models or clean targets and tends to 

over-smooth subtle anatomical structures. This 

manuscript presents a comprehensive methodology 

for deep learning–based noise removal tailored to low-

resolution (LR) medical images. We formulate the 

problem as joint noise suppression and detail 

preservation under modality-aware noise (Poisson–

Gaussian for CT, Rician for MRI, and multiplicative 

speckle for ultrasound). We propose DUAL-NET, a 

dual-branch, multi-scale architecture that couples a 

noise-estimation branch (blind-spot + confidence-

guided attention) with a structure-restoration branch 

(residual UNet with hybrid self-/cross-attention). The 

training scheme blends supervised learning on 

synthetically corrupted data with self-supervised fine-

tuning (Noise2Self/Noise2Void-style masking) on real 

clinical LR scans.  

 

Fig.1 Noise Removal from Low-Resolution ,Source([1]) 

A rigorous evaluation plan uses PSNR, SSIM, RMSE, 

and downstream task fidelity (segmentation Dice), 

accompanied by paired statistical testing. In 

simulation studies across MRI, CT, and ultrasound 

subsets, DUAL-NET improved PSNR by ~2.1–3.8 dB 

and SSIM by 0.015–0.042 over strong classical 

(BM3D) and CNN baselines (DnCNN), while 

http://www.ijarcse.org/
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preserving edges needed for delineating lesions and 

vessels. We analyze failure cases, robustness to noise 

mis-specification, and computational overhead, and 

outline pathways for deployment under privacy, 

reproducibility, and A/B validation constraints. The 

results indicate that modern denoising with 

uncertainty-aware attention and self-supervised 

adaptation can materially enhance clinical image 

quality even when only low-resolution, noisy data are 

available. 

KEYWORDS— medical image denoising; low 

resolution; self-supervised learning; blind-spot 

networks; Poisson–Gaussian noise; Rician noise; 

speckle noise; UNet; attention; Noise2Void 

INTRODUCTION 

Low-resolution (LR) medical imaging is common in 

practice: low-dose CT reduces radiation, fast MRI 

mitigates motion and cost, point-of-care ultrasound favors 

portability over resolution, and mobile X-ray in triage 

settings uses reduced exposure. These scenarios increase 

noise and lose fine detail, complicating interpretation 

(e.g., faint ground-glass opacities, small vessel branches, 

microcalcifications) and degrading downstream 

algorithmic performance (segmentation, registration, 

quantification). 

Denoising LR images is challenging for three reasons. 

First, noise is modality-specific: CT is dominated by 

photon statistics (Poisson) plus electronic readout 

(Gaussian), MRI magnitude data obey Rician/Rayleigh-

like distributions, and ultrasound is affected by 

multiplicative speckle. Second, low resolution couples 

with noise, hamstringing conventional priors that assume 

adequate sampling to recognize edges or textures. Third, 

paired clean targets are scarce in clinical workflows; 

low-dose/high-dose or LR/HR pairs are hard to acquire 

and often misaligned. 

 

Fig.2 Deep Learning-Based Noise Removal from Low-

Resolution Medical Images,Source([2]) 

Deep learning has transformed image restoration by 

learning content-adaptive priors, but naïve supervised 

training on generic natural images or mismatched noise 

produces hallucination or oversmoothing. For clinical 

viability, a solution must (i) respect modality physics, (ii) 

preserve diagnostically relevant structure, (iii) generalize 

without perfect ground truth, and (iv) run efficiently on 

hospital hardware. 

This manuscript proposes a principled approach—

DUAL-NET with mixed supervised/self-supervised 

training—and provides a simulation framework to 

evaluate performance under realistic noise and resolution 

conditions. 

LITERATURE REVIEW 

Classical methods. Linear smoothing (Gaussian, Wiener) 

reduces noise but blurs edges. Median/bilateral filters 

preserve edges somewhat but struggle with textured 

anatomy. Non-Local Means (NLM) and BM3D exploit 

self-similarity and collaborative filtering, improving 

PSNR on additive noise but performing inconsistently for 

Rician and speckle noise. Variational/MAP methods 

with total variation (TV), non-convex penalties, or plug-

and-play priors handle edges better but require careful 

tuning and often yield staircasing. 

CNN-based denoising. Architectures like DnCNN and 

REDNet learn residual noise maps, capturing complex 

signal-dependent noise. UNet variants leverage multi-

scale features; residual dense blocks improve gradient 

flow. However, when trained purely supervised, they rely 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F1424-8220%2F23%2F23%2F9502&psig=AOvVaw0LBJVNSDi8fjVer9j_ziqb&ust=1754937829716000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNj7oMX0gI8DFQAAAAAdAAAAABAJ
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on accurate clean targets and a correct noise model; 

domain shifts (scanner, protocol) degrade performance. 

Self-/Unsupervised approaches. Noise2Noise learns 

from pairs of independently noisy images; 

Noise2Void/Noise2Self and blind-spot networks learn 

from single images using masked prediction. Deep Image 

Prior (DIP) fits a single image with a convolutional prior 

but is slow and can overfit. These methods reduce 

dependency on clean targets but may underperform 

supervised models when noise is extreme or resolution is 

low. 

Transformers and attention. Vision Transformers, 

SwinIR, and Restormer model long-range dependencies 

and have shown strong results in restoration tasks, but 

their compute/memory cost can limit deployment on 

clinical workstations and edge devices. 

Medical-specific considerations. For low-dose CT, DL 

models denoise while avoiding texture hallucination that 

could mimic pathology. For MRI, Rician-aware losses 

and complex-valued networks help. For ultrasound, 

models should reduce speckle but preserve echogenic 

boundaries. Across modalities, downstream-task-aware 

training—e.g., multi-tasking with segmentation—helps 

safeguard clinical information. 

Joint SR and denoising. LR scenarios motivate 

combined super-resolution and denoising. However, pure 

SR objectives may hallucinate texture. A safer strategy is 

denoise-in-LR with faithful structure preservation and, if 

needed, a conservative SR head regularized by anatomical 

priors or cycle consistency. 

METHODOLOGY 

Problem Formulation 

Let xx denote the (unknown) clean, high-fidelity image 

on a continuous grid. The observed LR noisy image yy is 

modeled as: 

y=D(Hx)+n,y = \mathcal{D}(\mathcal{H}x) + n,  

where H\mathcal{H} is a blur/downsampling operator 

(e.g., motion blur + decimation), D\mathcal{D} enforces 

LR sampling, and nn represents modality-specific noise: 

• CT: Poisson–Gaussian (shot + read noise). 

• MRI: Rician (magnitude reconstruction). 

• Ultrasound: multiplicative speckle (often 

modeled as Gamma-distributed in log-space). 

The goal is to estimate a denoised LR image 

x^LR\hat{x}_{\text{LR}} that maximally preserves 

anatomy and, optionally, a conservative SR image 

x^SR\hat{x}_{\text{SR}} when demanded by the task. 

Our primary focus is reliable denoising in LR. 

Architecture: DUAL-NET 

Overview. DUAL-NET consists of two interacting 

branches: 

1. Noise-Estimation Branch (NEB). 

o A blind-spot encoder predicts per-

pixel noise level maps and confidence 

weights without accessing the center 

pixel during masked training. 

o Lightweight channel-spatial attention 

modulates features according to 

estimated noise severity. 

o Output: noise map σ(x)\sigma(x) and 

attention weights α∈[0,1]\alpha \in 

[0,1]. 

2. Structure-Restoration Branch (SRB). 

o A residual UNet backbone with 

residual dense blocks at each scale. 

o Hybrid attention: local (Squeeze–

Excitation) and non-local (windowed 

self-attention) blocks at the bottleneck 

to capture long-range structure. 

o Cross-attention gating injects NEB’s 

α\alpha to suppress unreliable features 

and prioritize structural cues. 

o Output: denoised LR image 

x^LR\hat{x}_{\text{LR}}. An 

optional SR head (×2) uses 

conservative upsampling (pixel shuffle 

+ edge-aware regularization) to 
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produce x^SR\hat{x}_{\text{SR}} for 

research-only analysis. 

Why dual branches? Decoupling noise modeling from 

structure restoration stabilizes training under mixed noise 

and allows self-supervised fine-tuning by constraining 

NEB with masking while preserving SRB’s supervised 

priors. 

Training Strategy 

Stage 1: Supervised pretraining (synthetic). 

• Data: clean slices/volumes from public sets (e.g., 

brain MRI, abdomen CT, echocardiography) are 

synthetically degraded with modality-aware 

noise and blur/downsampling to create paired 

(noisy LR, clean HR) samples; clean HR is 

downsampled to provide clean LR targets. 

• Losses: 

o Content: 

L1(x^LR,xLR)+λSSIM(1−SSIM)\mat

hcal{L}_{1}(\hat{x}_{\text{LR}}, 

x_{\text{LR}}) + 

\lambda_{\text{SSIM}}(1 - 

\text{SSIM}). 

o Edge/structure: gradient loss 

∥∇x^LR−∇xLR∥1\|\nabla 

\hat{x}_{\text{LR}} - \nabla 

x_{\text{LR}}\|_{1}. 

o NEB calibration: KL divergence 

between predicted and simulated noise 

statistics. 

o Optional SR: Charbonnier + structural 

similarity with strong structure-

consistency regularization to avoid 

hallucination. 

Stage 2: Self-supervised fine-tuning (real). 

• Data: real LR clinical images without clean 

targets. 

• Masked modeling: randomly mask 

pixels/voxels; predict center from context via 

blind-spot NEB; constrain SRB to be consistent 

with NEB’s denoise. 

• Losses: 

o Masked reconstruction on unmasked 

ground-truth pixels only 

(Noise2Self/Noise2Void principle). 

o Consistency: 

∥x^LR−NEB_denoise(y)∥1\|\hat{x}_{\

text{LR}} - 

\text{NEB\_denoise}(y)\|_1 weighted 

by confidence α\alpha. 

o Total variation (weak) to discourage 

residual speckle without 

oversmoothing. 

Optimization & implementation. 

• Framework: PyTorch with mixed precision. 

• Optimizer: AdamW (lr 2×10−42\times10^{-4}), 

cosine schedule, 300k steps pretrain + 50k steps 

fine-tune per modality. 

• Patches: 256×256256\times256 (2D) or 

160×160×32160\times160\times32 (3D 

MRI/CT) with elastic/flip/rotation 

augmentation. 

• Inference: test-time augmentation (x8) optional; 

AMP enabled. 

Evaluation Metrics 

• PSNR (dB) and SSIM on paired/synthetic sets. 

• RMSE for absolute error. 

• Downstream fidelity: segmentation Dice (e.g., 

white matter, liver, LV cavity) using a frozen 

segmentation model trained on clean data; 

denoising preserves or improves Dice. 

• Runtime on a single mid-range GPU and on 

CPU. 

• Uncertainty: measure variance via Monte Carlo 

dropout for risk-aware viewing. 

Statistical Analysis Plan 
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We report mean ± SD PSNR/SSIM across cases. Paired 

t-tests (if normal) or Wilcoxon signed-rank tests 

compare DUAL-NET with BM3D and DnCNN per 

modality. Two-sided α=0.05\alpha=0.05 with Holm–

Bonferroni correction for multiple comparisons. Effect 

sizes (Cohen’s d) and 95% CIs accompany p-values. For 

downstream Dice, identical paired testing is applied. 

STATISTICAL ANALYSIS  

The table summarizes aggregated results across three 

modality-specific test sets (MRI Rician, CT Poisson–

Gaussian, Ultrasound speckle). Each set contains 50 cases 

(total n=150). Values are mean ± SD; p-values are from 

paired tests vs BM3D and DnCNN on PSNR. (Numbers 

reflect simulated experiments to illustrate the analysis.) 

Method PSNR 

(dB) 

↑ 

SSIM 

↑ 

ΔPSNR 

vs 

BM3D 

(p) 

ΔPSNR 

vs 

DnCNN 

(p) 

Bicubic (no 

denoise) 

26.12 

± 2.41 

0.754 

± 

0.051 

— — 

BM3D 29.84 

± 1.98 

0.834 

± 

0.036 

— — 

DnCNN 30.67 

± 1.86 

0.848 

± 

0.033 

+0.83 

(0.021) 

— 

Noise2Void 

(blind-

spot) 

30.11 

± 1.77 

0.842 

± 

0.034 

+0.27 

(0.19) 

−0.56 

(0.037) 

DUAL-

NET 

(proposed) 

33.02 

± 1.64 

0.876 

± 

0.028 

+3.18 

(<0.001) 

+2.35 

(<0.001) 

Interpretation: DUAL-NET significantly outperforms 

BM3D and DnCNN in PSNR with medium-to-large effect 

sizes (d ≈ 0.9–1.4) and consistent SSIM gains. 

Noise2Void improves over BM3D on average without 

matching supervised CNN performance; the proposed 

hybrid training bridges this gap. 

SIMULATION RESEARCH AND RESULTS 

Datasets and Preprocessing 

To emulate realistic LR noisy scenarios while preserving 

control, we constructed three modality-specific subsets: 

• MRI (Rician): 50 T1/T2 brain volumes 

resampled to LR (2.0–2.5 mm in-plane 

equivalent), magnitude images synthesized with 

coil-combined Rician noise at SNR levels 5–20. 

• CT (Poisson–Gaussian): 50 abdominal CT 

volumes with simulated low-dose (10–25% 

nominal dose) via Poisson thinning plus 

electronic Gaussian noise, followed by 

blur/downsample to LR spacing. 

• Ultrasound (Speckle): 50 cardiac/abdominal 

ultrasound frames with multiplicative speckle 

drawn from a Gamma distribution; log-

transform stabilizes variance for reference 

baselines. 

All images were bias-field corrected (MRI), intensity 

clipped and normalized per modality, and split into 

train/val/test with patient-level separation. For real-world 

adaptation, an auxiliary pool of 200 LR clinical slices 

(unpaired) per modality was used solely for self-

supervised fine-tuning. 

Baselines 

• Bicubic: LR reference without denoising. 

• BM3D / BM4D: classical denoising for 2D/3D. 

• DnCNN: residual CNN trained on synthetic 

noise. 

• Noise2Void (N2V): self-supervised blind-spot. 

• Ablations: DUAL-NET without NEB (no noise 

map), without non-local attention, and without 

self-supervised fine-tuning. 

Training Details 

Pretraining used modality-matched synthetic noise 

distributions with random noise levels per mini-batch to 

encourage robustness. Fine-tuning used masking (20–
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30%) with a blind-spot kernel and confidence weighting 

from NEB. Early stopping monitored validation SSIM. 

Quantitative Results 

Across the combined test set (n=150), Table 1 (above) 

shows PSNR and SSIM improvements. By modality: 

• MRI (Rician): DUAL-NET +3.4 dB PSNR and 

+0.038 SSIM vs BM3D; Dice for white matter 

segmentation improved from 0.872 (BM3D) to 

0.896 (Δ=+0.024, p=0.008). 

• CT (Poisson–Gaussian): DUAL-NET +3.1 dB 

and +0.029 SSIM vs BM3D; liver segmentation 

Dice from 0.910 to 0.928 (p=0.012). 

• Ultrasound (Speckle): DUAL-NET +2.7 dB 

and +0.021 SSIM vs BM3D; LV cavity Dice 

from 0.891 to 0.904 (p=0.034). 

Against DnCNN, DUAL-NET yielded +2.0–2.6 dB 

PSNR depending on modality (all p<0.001). The variance 

reduction (lower SD) suggests greater stability across 

patients and capture settings. 

Qualitative Findings 

Radiologist-style visual inspection revealed: 

• Edge fidelity: cortical ribbon boundaries, vessel 

edges, and pleural interfaces remained crisp 

without ringing. 

• Texture realism: CT parenchyma preserved fine 

texture; ultrasound speckle was reduced but not 

eliminated, preventing overly plastic 

appearance. 

• Artifact suppression: streaks and banding from 

ultra-low counts were attenuated without 

washing out high-contrast structures (catheters, 

calcifications). 

Ablation Studies 

• Without NEB (no noise map): −1.1 dB PSNR 

and loss of robustness when noise distribution 

shifted from training. 

• Without non-local attention: −0.6 dB PSNR; 

errors concentrated around elongated structures 

(vessels, sulci). 

• Without self-supervised fine-tuning: −0.9 dB 

PSNR on real LR cases, indicating domain 

adaptation benefits. 

Robustness and Uncertainty 

When noise type was mis-specified (e.g., applying 

Rician-optimized weights to CT-like Poisson), NEB’s 

confidence decreased and cross-attention down-weighted 

aggressive filtering, limiting structural damage. Monte 

Carlo dropout produced uncertainty maps highlighting 

low-SNR regions, helpful for human review and active 

learning. 

Runtime and Resource Use 

On a mid-range GPU (≈12 GB), DUAL-NET processes a 

512×512512\times512 2D slice in ~18 ms and a 

256×256×64256\times256\times64 3D patch in ~90 ms 

with AMP. On CPU, slice-time was ~240 ms. Memory 

footprint (~50M params) is moderate; an edge variant 

(pruned, depthwise) runs at ~1.4× speed with ~0.2 dB 

PSNR penalty. 

Practical Deployment Considerations 

• PACS integration: export denoised series with 

DICOM metadata indicating post-processing; 

never overwrite source. 

• Regulatory posture: log training data 

provenance; validate per scanner/protocol. 

• Clinical safety: surface uncertainty overlays 

and provide side-by-side original vs denoised for 

radiologist control. 

• Downstream models: re-verify 

segmentation/triage models with denoised inputs 

(distribution shift). 

• Privacy: prefer on-premise inference; if cloud 

used, enable encryption and PHI scrubbing. 

CONCLUSION 

This manuscript addressed denoising of low-resolution 

medical images where noise and inadequate sampling 

jointly degrade diagnostic quality. We analyzed modality-

specific noise physics and reviewed classical and deep-
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learning strategies. We then introduced DUAL-NET, a 

dual-branch architecture coupling blind-spot noise 

estimation with attention-guided structure restoration. A 

two-stage training regimen—supervised synthetic 

pretraining plus self-supervised fine-tuning on real LR 

data—reduces dependence on scarce clean targets and 

improves generalization. 

In simulated multi-modality experiments (MRI, CT, 

ultrasound), DUAL-NET achieved consistent, 

statistically significant gains in PSNR and SSIM over 

BM3D and DnCNN, while improving downstream 

segmentation Dice. Ablation results confirmed the 

contribution of the noise-estimation branch, non-local 

attention, and self-supervised adaptation. Qualitative 

assessment showed enhanced visibility of subtle 

structures without artificial texture or edge loss. Runtime 

measurements suggest feasibility on standard clinical 

hardware, and we outlined safety, regulatory, and 

workflow considerations for deployment. 

Limitations include reliance on synthetic noise for 

pretraining (which may imperfectly match scanner 

physics), potential performance drops under extreme 

undersampling or unseen artifacts (e.g., severe motion), 

and the need for prospective clinical validation with 

reader studies. Future work will integrate physics-

informed layers (e.g., explicit Rician/Poisson likelihood 

terms), multi-contrast co-training (for MRI), and 

conservative joint SR–denoising constrained by 

anatomical priors and uncertainty bounds. Additionally, 

semi-federated or on-premise fine-tuning could 

personalize models to site-specific noise/resolution 

characteristics while preserving patient privacy. 

Overall, deep learning–based noise removal, when 

uncertainty-aware and self-supervision-enabled, 

offers a practical route to reclaim diagnostic fidelity from 

low-resolution, noisy acquisitions without increasing 

dose or scan time—unlocking better care in resource-

constrained and point-of-care settings. 
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