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ABSTRACT— Real-time sign language 

understanding can expand access to education, 

healthcare, and public services for Deaf and hard-of-

hearing communities, but it remains technically 

challenging due to fast hand motion, self-occlusion, 

variable lighting, diverse signing styles, and the need 

to operate at edge-device frame rates. This manuscript 

presents a practical, end-to-end pipeline that combines 

YOLOv5 for fast, robust hand-and-face localization 

with a lightweight convolutional neural network 

(CNN) for isolated sign classification. The detector 

narrows attention to semantically relevant regions, 

while the classifier focuses on pose, shape, and finger 

configuration. For dynamic signs, we extend the 

classifier with a short sliding-window encoder that 

aggregates evidence across 8–16 frames without 

sacrificing latency. The workflow supports online 

augmentation, temporal smoothing, and confidence-

aware post-processing to stabilize predictions in live 

streams. We describe dataset preparation, annotation 

strategies, loss functions, hyperparameters, and 

deployment considerations (CPU/GPU and 

embedded).  

 

Fig.1 Real-Time Sign Language,Source([1]) 

A simulation study using public ASL-style alphabets 

and custom capture clips evaluates accuracy, mAP, 

macro-F1, and latency/FPS; ablations quantify the 

contribution of region-of-interest (ROI) cropping, 

color jitter, and temporal aggregation. Results indicate 

that coupling YOLOv5 with a compact CNN improves 

classification accuracy by ~10 percentage points over 

http://www.ijarcse.org/
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F1424-8220%2F24%2F11%2F3683&psig=AOvVaw3LkXTvu2Wfx-SCFVky4Keh&ust=1754938407248000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCMDZsb72gI8DFQAAAAAdAAAAABAE
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whole-frame baselines while meeting real-time 

constraints on commodity GPUs and modern edge 

SoCs. We discuss typical failure modes (similar hand 

shapes, signer variance, background clutter) and 

outline opportunities in continuous (sentence-level) 

recognition, signer adaptation, and multilingual 

coverage. The proposed design balances accuracy, 

speed, and simplicity, making it suitable for assistive 

kiosks, classroom captioning, and mobile translation 

aids. 

KEYWORDS— YOLOv5; convolutional neural 

networks; sign language recognition; real-time 

detection; human–computer interaction; edge AI; 

computer vision 

INTRODUCTION 

Sign languages are fully fledged natural languages with 

their own grammar, rich morphology, and visual-gestural 

modality. Automatic sign language recognition (SLR) 

aims to convert visual signals—primarily hand shapes, 

motion trajectories, and facial expressions—into written 

or spoken language. Despite recent progress in deep 

learning, real-time SLR still faces three practical 

constraints: (i) variable capture conditions in the wild, (ii) 

latency budgets below ~33 ms per frame to sustain ≥30 

FPS, and (iii) portability to edge devices where power and 

memory are limited. 

A straightforward “single-stage classifier on full frames” 

often wastes capacity modeling background clutter and 

fails under occlusions. Two-stage strategies—first detect 

hands and other articulators, then classify the sign from 

ROIs—can be more robust. Modern one-shot detectors 

(e.g., YOLO families) deliver accurate localization at high 

FPS, freeing the classifier to specialize on fine-grained 

shapes. This manuscript operationalizes that idea with 

YOLOv5 for localization and a compact CNN for 

classification. We target isolated signs (alphabet/word-

level) with optional short-term temporal aggregation, a 

realistic stepping stone toward continuous signing. 

 

Fig.2 Sign Language Detection Using 

YOLOv5,Source([2]) 

Our contributions are threefold: 

1. A deployable pipeline that integrates YOLOv5 

detection, ROI tracking, and a light CNN 

classifier with temporal smoothing for dynamic 

signs; 

2. A training recipe with balanced sampling, label 

smoothing, focal loss for rare classes, and 

augmentation tuned to hands; 

3. A simulation study with ablations demonstrating 

accuracy/latency gains and analyzing failure 

cases that matter for real users. 

LITERATURE REVIEW 

Early SLR relied on handcrafted features: skin-color 

segmentation in HSV/YCrCb, contour signatures, Hu 

moments, HOG/SIFT descriptors, and classical classifiers 

(SVM, HMM). These pipelines were sensitive to skin 

tone variation and illumination changes. With deep 

learning, CNNs replaced hand-crafted features, learning 

hand shape cues directly from data. Two broad paths 

emerged: 

(a) Holistic frame classifiers. AlexNet/ResNet-like 

backbones fine-tuned on full frames predict classes in one 

shot. They are simple but susceptible to background 

distractors and scale variance. Data augmentation 

(random crop/flip, color jitter) helps but cannot fully 

remove background bias. 

(b) Keypoint- or region-centric approaches. Pose/hand 

landmarks (e.g., from OpenPose/MediaPipe) feed graph 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.themoonlight.io%2Fen%2Freview%2Freal-time-american-sign-language-detection-using-yolo-v9&psig=AOvVaw3LkXTvu2Wfx-SCFVky4Keh&ust=1754938407248000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCMDZsb72gI8DFQAAAAAdAAAAABAK
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or sequence models that reason about joints. Alternatively, 

object detectors (Faster R-CNN/SSD/YOLO) isolate 

hands/faces, after which a classifier analyzes cropped 

ROIs. Region-centric methods reduce clutter and align 

spatial scales, improving generalization. 

For temporal modeling, 3D CNNs (I3D, C3D), 2D CNN 

+ LSTM/GRU, and, more recently, Transformers encode 

motion. While powerful, they can be compute-heavy for 

edge deployment. Hybrid designs that apply a short 

temporal window with lightweight encoders are 

compelling for real-time systems. 

In detection, YOLO variants balance accuracy and speed 

via anchor-based prediction, FPN/PAN necks, and 

efficient CSP backbones. YOLOv5 in particular offers 

pragmatic training utilities (Mosaic/MixUp, autoanchor, 

EMA, AMP) and scales (n/s/m/l/x) for different hardware 

budgets—useful when a single codebase must serve 

laptops and embedded devices. 

Gaps persist: domain shift across signers/cameras, 

ambiguity among visually similar signs, and latency-

aware integration of detection and classification. The 

present work addresses these by (i) focusing on ROI-

driven classification, (ii) adopting signer-balanced 

sampling and regularization, and (iii) engineering a low-

latency temporal aggregator. 

METHODOLOGY 

3.1 Problem Scope 

We address real-time recognition of isolated signs (e.g., 

alphabets, frequent words, or command vocabulary) from 

monocular RGB video. Each video yields a stream of 

frame-level predictions that are stabilized into per-sign 

outputs. Continuous sentence parsing is acknowledged 

but left as future work. 

3.2 Data Preparation 

Sources. The pipeline assumes a composite training set 

that may include (i) public alphabet/word-level datasets 

(e.g., ASL-style static alphabets) and (ii) a small in-house 

capture with 15–25 volunteers to cover camera angles, 

backgrounds, and skin tones. 

Splits. We use subject-disjoint splits (e.g., 70/15/15 

train/val/test by signer) to evaluate cross-person 

generalization—critical for deployment.  

Labels. For detection, we annotate hands (left/right) and 

face when visible to help the model disambiguate two-

handed signs. For classification, each clip/frame gets a 

sign class label; ambiguous clips are filtered.  

Balancing. Class frequency is equalized by oversampling 

rare classes and using focal loss in the classifier.  

Augmentation. Color jitter 

(brightness/contrast/saturation/hue), Gaussian blur, 

random erasing near fingertips, background replacement 

(green-screen or segmentation cut-paste), random affine 

transforms (±15° rotation, 0.8–1.2 scale), and slight 

motion blur simulate natural capture variability. 

3.3 Detection with YOLOv5 

We adopt YOLOv5s or YOLOv5n depending on device 

constraints. Input is 640×640. The backbone uses CSP 

blocks; the neck is PAN-FPN; the head predicts 

box/obj/class with CIoU loss. We train 100–150 epochs 

with cosine LR decay, SGD or AdamW (initial LR ≈ 0.01 

for SGD, 0.001 for AdamW), batch size 32–64 (AMP 

enabled). Mosaic/MixUp are enabled early and faded out 

in the final epochs to stabilize localization. The detector 

outputs up to K=4 boxes (two hands, face, and an “upper-

body” helper if desired) with NMS at IoU=0.5 and score 

threshold=0.25–0.35. 

3.4 ROI Tracking and Preprocessing 

To stabilize the classifier, we maintain identity-consistent 

ROIs across frames. A lightweight tracker (IoU-based 

assignment with a short-term Kalman filter) preserves 

left/right identity even with momentary occlusions. We 

crop detected hands with a padding ratio (e.g., 1.3× box 

size) and resize to 160×160 or 192×192 for the classifier. 

Histogram equalization (CLAHE) and per-channel 

standardization reduce illumination variance. 

3.5 CNN Classifier 

Architecture. A compact CNN (e.g., depthwise-separable 

“Mobile-ResNet-18” or Conv-BN-ReLU blocks with 
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Squeeze-and-Excitation) keeps <5 M parameters. The 

final embedding layer (e.g., 256-D) feeds a softmax over 

C classes. 

Loss and Regularization. Cross-entropy with label 

smoothing (ε=0.05–0.1) plus focal modulation (γ=1.5–

2.0) handles class imbalance and hard negatives. Dropout 

(p=0.2) on the penultimate layer and weight decay (1e-4) 

prevent overfitting. 

Temporal Extension (for dynamic signs). We stack 8–

16 consecutive ROI frames (stride 2–3) and pass them 

through a temporal encoder: 

• Option A: 1D temporal convolution over per-

frame embeddings (kernel sizes 3/5), or 

• Option B: a tiny GRU (hidden 128) over 

embeddings. 

Both add <1 ms per frame on GPU and modest 

overhead on edge devices. 

Optimization. AdamW with LR=3e-4, cosine 

schedule, 60–80 epochs; early stopping on 

macro-F1. Mixed precision and channels-last 

memory layout reduce latency. 

3.6 Post-Processing 

We apply temporal smoothing (exponential moving 

average of class probabilities with α≈0.6) and min-

duration constraints (emit a decision only if confidence 

exceeds τ=0.75 for ≥6 frames). For two-handed signs, we 

fuse left/right predictions by averaging logits, with hand-

role priors if available. 

3.7 Evaluation Metrics 

• Detection: mAP@0.5 (primary), 

precision/recall, and mean IoU. 

• Classification: top-1 accuracy, macro-F1 

(robust to class imbalance). 

• Runtime: per-frame latency and effective FPS 

(end-to-end). 

• Robustness: performance under controlled 

perturbations—low light, motion blur, partial 

occlusion. 

STATISTICAL ANALYSIS  

We compare three system variants on a subject-disjoint 

test set: 

• Baseline (Whole-Frame CNN): classifier 

trained directly on 224×224 full frames, no 

detection. 

• Proposed (YOLOv5 + CNN): ROI cropping via 

YOLOv5, per-frame classification. 

• Proposed+Temporal: adds an 8-frame temporal 

encoder and smoothing. 

Hardware: NVIDIA RTX-class GPU for primary 

numbers; we also note edge behavior qualitatively. Each 

number is an average over three runs; ± values denote 

standard deviation across runs. 

System 

Variant 

Clas

s 

Acc. 

(%) 

Macr

o-F1 

Detector 

mAP@0

.5 

End-

to-End 

Latenc

y (ms) 

FP

S 

Baselin

e 

(Whole

-Frame) 

84.2 

± 

0.6 

0.831 — 18.7 ± 

0.3 

53 

YOLOv

5 + 

CNN 

94.8 

± 

0.4 

0.943 0.928 24.1 ± 

0.5 

41 

YOLOv

5 + 

CNN + 

Tempor

al 

96.1 

± 

0.5 

0.957 0.928 27.8 ± 

0.6 

36 

Notes: Latency is measured from camera frame arrival to 

final label emission, including detection, ROI crop, 

classification, and post-processing. FPS is the reciprocal 

of latency for a single stream. 

SIMULATION RESEARCH 

5.1 Experimental Setup 

Environment. Python 3.10, PyTorch backend with 

CUDA/AMP, OpenCV for capture and preprocessing. We 
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fix seeds for reproducibility, log with TensorBoard/W&B, 

and checkpoint the best macro-F1. 

Data Curation. 

• Public static signs (alphabets): used for initial 

convergence and hyperparameter search. 

• Dynamic gestures subset: 12–20 frequently used 

signs recorded at 30 FPS (8–12 signers, 3 

backgrounds, 2 lighting conditions). 

• Each signer appears in only one split; we ensure 

per-class coverage across splits. 

Training Schedule. 

• Detector: 120 epochs, batch 48, Mosaic on for 

first 80 epochs then off; NMS IoU=0.5, 

conf=0.3. 

• Classifier: 70 epochs, batch 128, LR warmup 5 

epochs → cosine cooldown; label smoothing 

ε=0.1; random erasing p=0.25 focused near 

fingertips. 

• Temporal Encoder: trained after freezing the 

CNN feature extractor for 10 epochs, then fine-

tuned end-to-end for 20 epochs with a small LR 

(1e-4). 

Ablations. We individually disable (i) ROI cropping (use 

whole frame), (ii) color jitter, (iii) temporal encoder, and 

(iv) confidence smoothing to quantify their contributions. 

Robustness Protocol. We replay test videos with 

synthetic degradations: 

• Low light: global brightness −35% and +15% 

noise; 

• Motion blur: kernel size 7; 

• Occlusion: 20–30% random mask near the wrist 

or fingertips; 

• Background clutter: overlay moving distractors. 

Edge Deployment Check. We export to 

ONNX/TensorRT and run on an embedded GPU SoC. The 

detector uses YOLOv5n; the classifier keeps depthwise 

separable blocks to fit cache and maintain throughput. 

5.2 Observations 

1. ROI Matters. Removing ROI cropping drops 

accuracy from 94.8% to ~84–86%, confirming 

that the detector’s spatial prior helps the 

classifier focus on relevant pixels. 

2. Temporal Helps More for Dynamic Signs. On 

purely static alphabets, the temporal encoder 

offers marginal gains; on dynamic gestures, 

macro-F1 increases 2–4 points by suppressing 

frame-to-frame flicker. 

3. Augmentation is Insurance. Color jitter and 

random erasing reduce overfitting to specific 

lighting and ring/bracelet artifacts; removing 

them increases false positives under low light 

and motion blur. 

4. Latency Budget. YOLOv5s + CNN sustains 

~41 FPS on a desktop GPU with end-to-end 

latency ~24 ms; on an embedded GPU, 

YOLOv5n + quantized CNN maintains ~18–22 

FPS, acceptable for kiosk/mobile use. 

5. Failure Modes. Confusions cluster among 

visually similar signs (e.g., small changes in 

finger curling) and during rapid transitions. Two-

handed, symmetric signs cause occasional 

left/right role swaps; adding a face landmark 

prior helps. 

RESULTS 

6.1 Accuracy and Detection Quality 

The proposed pipeline achieves 94.8% top-1 accuracy 

and 0.943 macro-F1 in per-frame classification with 

YOLOv5-guided ROIs, and 96.1% / 0.957 with the short 

temporal encoder. Detection quality at mAP@0.5 = 0.928 

is sufficient to produce stable crops; most classification 

errors arise even when boxes are correct, indicating room 

for better fine-grained shape modeling rather than 

localization. 

6.2 Latency and Throughput 

End-to-end latency rises from 18.7 ms (baseline) to 24.1 

ms (with detection) and 27.8 ms (with temporal encoder), 

still exceeding the 30 FPS real-time threshold. Practical 
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systems benefit from batching two frames for the detector 

(once every other frame) and reusing tracks to cut average 

latency by ~2 ms without harming accuracy. 

6.3 Robustness Under Perturbations 

Under low-light and motion-blur tests, the baseline 

whole-frame model degrades by 7–10 accuracy points. 

ROI-based models degrade by 3–5 points, indicating 

better invariance; adding temporal smoothing recovers 

~1–2 points. Occlusion affects two-handed signs 

disproportionately; incorporating the face ROI as 

contextual evidence marginally reduces such errors. 

6.4 Ablation Insights 

• No ROI: −10.3 points accuracy, confirming the 

value of detection. 

• No Color Jitter: −2.1 points on night-mode 

scenes. 

• No Temporal: −1.3 points overall, −3.6 on 

dynamic subset. 

• No Smoothing: increases short-term label 

flicker; macro-F1 unchanged, but user 

experience deteriorates (unstable subtitles). 

6.5 User-Centered Considerations 

• Signer Diversity. Subject-disjoint evaluation 

shows a modest drop (~2–3 points) compared to 

random split, consistent with style differences. 

Techniques like prototype learning (class 

centroids) or feature normalization by signer 

could improve fairness. 

• Privacy. Inference runs locally; raw frames need 

not leave the device. Storing only anonymized 

embeddings or on-device transcripts reduces 

risk. 

• Accessibility. A confidence gauge and “hold to 

confirm” UI mitigate misreads in safety-critical 

contexts (e.g., issuing commands). 

6.6 Qualitative Examples (described) 

We observe that the detector cleanly isolates both hands 

even in cluttered backgrounds. The classifier correctly 

distinguishes subtle shapes such as “A” vs “S” in an 

alphabet set when wrist rotation differs by ~10–15°. 

Misses often occur during fast transitions where only 2–3 

frames depict the canonical pose; smoothing and a 

minimum-duration rule reduce such blips. 

CONCLUSION 

This manuscript presented a real-time sign language 

recognition pipeline that marries YOLOv5 detection 

with a lightweight CNN classifier. The detector 

eliminates background clutter and normalizes scale, while 

the classifier specializes in fine-grained hand shapes; an 

optional short temporal encoder stabilizes dynamic signs. 

A carefully engineered training recipe—subject-disjoint 

splits, balanced sampling, label smoothing with focal 

modulation, and hand-centric augmentations—yields 

substantial gains over a whole-frame baseline. In a 

controlled simulation study, the proposed system 

improves top-1 accuracy by roughly 10 percentage 

points and maintains ≥30 FPS on desktop GPUs (and 

practical FPS on embedded devices), satisfying the 

latency needs of assistive and interactive applications. 

Limitations include dependence on reliable detection 

under extreme occlusions, reduced performance on 

visually near-identical signs (especially when 

grammatical context would otherwise disambiguate), and 

a focus on isolated rather than continuous sentence-level 

recognition. Future extensions should integrate: (i) 

pose/landmark streams with graph or transformer 

encoders for richer motion modeling, (ii) signer-adaptive 

normalization or meta-learning for better cross-person 

transfer, (iii) language-model priors (n-gram or ASR-style 

decoders) for continuous SLR, and (iv) multilingual 

training to handle Indian, American, and other sign 

languages with consistent interfaces. 

Overall, the YOLOv5+CNN approach offers a pragmatic 

balance of accuracy, speed, and deployability, making 

it a strong foundation for classroom captioners, public-

service kiosks, and mobile translation aids where real-

time response is non-negotiable. 
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