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ABSTRACT— Real-time sign language e ——
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variable lighting, diverse signing styles, and the need o g
to operate at edge-device frame rates. This manuscript e Sontamusesecsantientaver
presents a practical, end-to-end pipeline that combines l o =i

YOLOVS for fast, robust hand-and-face localization

with a lightweight convolutional neural network Namagantana ‘ SgnLonpusoe
(CNN) for isolated sign classification. The detector
narrows attention to semantically relevant regions, .""“m“ .! ld‘i e

while the classifier focuses on pose, shape, and finger

configuration. For dynamic signs, we extend the

Transtation

classifier with a short sliding-window encoder that

aggregates evidence across 8-16 frames without Fig.1 Real-Time Sign Language,Source([1])

sacrificing latency. The workflow supports online A simulation study using public ASL-style alphabets
augmentation, temporal smoothing, and confidence- and custom capture clips evaluates accuracy, mAP,
aware post-processing to stabilize predictions in live macro-F1, and latency/FPS; ablations quantify the
streams. We describe dataset preparation, annotation contribution of region-of-interest (ROI) cropping,
strategies, loss functions, hyperparameters, and color jitter, and temporal aggregation. Results indicate
deployment  considerations (CPU/GPU and that coupling YOLOVS with a compact CNN improves
embedded). classification accuracy by ~10 percentage points over
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whole-frame baselines while meeting real-time
constraints on commodity GPUs and modern edge
SoCs. We discuss typical failure modes (similar hand
shapes, signer variance, background clutter) and
outline opportunities in continuous (sentence-level)
recognition, signer adaptation, and multilingual
coverage. The proposed design balances accuracy,
speed, and simplicity, making it suitable for assistive
kiosks, classroom captioning, and mobile translation
aids.

KEYWORDS— YOLOV5; convolutional neural
networks; sign language recognition; real-time
detection; human—computer interaction; edge Al;
computer vision

INTRODUCTION

Sign languages are fully fledged natural languages with
their own grammar, rich morphology, and visual-gestural
modality. Automatic sign language recognition (SLR)
aims to convert visual signals—primarily hand shapes,
motion trajectories, and facial expressions—into written
or spoken language. Despite recent progress in deep
learning, real-time SLR still faces three practical
constraints: (i) variable capture conditions in the wild, (ii)
latency budgets below ~33 ms per frame to sustain >30
FPS, and (iii) portability to edge devices where power and
memory are limited.

A straightforward “single-stage classifier on full frames”
often wastes capacity modeling background clutter and
fails under occlusions. Two-stage strategies—first detect
hands and other articulators, then classify the sign from
ROIs—can be more robust. Modern one-shot detectors
(e.g., YOLO families) deliver accurate localization at high
FPS, freeing the classifier to specialize on fine-grained
shapes. This manuscript operationalizes that idea with
YOLOvVS for localization and a compact CNN for
classification. We target isolated signs (alphabet/word-
level) with optional short-term temporal aggregation, a

realistic stepping stone toward continuous signing.
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Fig.2 Sign Language Detection Using
YOLOvS,Source([2])
Our contributions are threefold:

1. A deployable pipeline that integrates YOLOVS
detection, ROI tracking, and a light CNN
classifier with temporal smoothing for dynamic
signs;

2. A training recipe with balanced sampling, label
smoothing, focal loss for rare classes, and
augmentation tuned to hands;

3. Asimulation study with ablations demonstrating
accuracy/latency gains and analyzing failure
cases that matter for real users.

LITERATURE REVIEW

Early SLR relied on handcrafted features: skin-color
segmentation in HSV/YCrCb, contour signatures, Hu
moments, HOG/SIFT descriptors, and classical classifiers
(SVM, HMM). These pipelines were sensitive to skin
tone variation and illumination changes. With deep
learning, CNNs replaced hand-crafted features, learning
hand shape cues directly from data. Two broad paths
emerged:

(a) Holistic frame classifiers. AlexNet/ResNet-like
backbones fine-tuned on full frames predict classes in one
shot. They are simple but susceptible to background
distractors and scale variance. Data augmentation
(random crop/flip, color jitter) helps but cannot fully
remove background bias.

(b) Keypoint- or region-centric approaches. Pose/hand

landmarks (e.g., from OpenPose/MediaPipe) feed graph
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or sequence models that reason about joints. Alternatively,
object detectors (Faster R-CNN/SSD/YOLO) isolate
hands/faces, after which a classifier analyzes cropped
ROIs. Region-centric methods reduce clutter and align
spatial scales, improving generalization.

For temporal modeling, 3D CNNs (I3D, C3D), 2D CNN
+ LSTM/GRU, and, more recently, Transformers encode
motion. While powerful, they can be compute-heavy for
edge deployment. Hybrid designs that apply a short
temporal window with lightweight encoders are
compelling for real-time systems.

In detection, YOLO variants balance accuracy and speed
via anchor-based prediction, FPN/PAN necks, and
efficient CSP backbones. YOLOVS in particular offers
pragmatic training utilities (Mosaic/MixUp, autoanchor,
EMA, AMP) and scales (n/s/m/I/x) for different hardware
budgets—useful when a single codebase must serve
laptops and embedded devices.

Gaps persist: domain shift across signers/cameras,
ambiguity among visually similar signs, and latency-
aware integration of detection and classification. The
present work addresses these by (i) focusing on ROI-
driven classification, (ii) adopting signer-balanced
sampling and regularization, and (iii) engineering a low-
latency temporal aggregator.

METHODOLOGY

3.1 Problem Scope

We address real-time recognition of isolated signs (e.g.,
alphabets, frequent words, or command vocabulary) from
monocular RGB video. Each video yields a stream of
frame-level predictions that are stabilized into per-sign
outputs. Continuous sentence parsing is acknowledged
but left as future work.

3.2 Data Preparation

Sources. The pipeline assumes a composite training set
that may include (i) public alphabet/word-level datasets
(e.g., ASL-style static alphabets) and (ii) a small in-house
capture with 15-25 volunteers to cover camera angles,

backgrounds, and skin tones.

Splits. We use subject-disjoint splits (e.g., 70/15/15
train/val/test by signer) to evaluate cross-person
generalization—critical for deployment.

Labels. For detection, we annotate hands (left/right) and
face when visible to help the model disambiguate two-
handed signs. For classification, each clip/frame gets a
sign class label; ambiguous clips are filtered.

Balancing. Class frequency is equalized by oversampling
rare classes and using focal loss in the classifier.
Augmentation. Color jitter
(brightness/contrast/saturation/hue),  Gaussian  blur,
random erasing near fingertips, background replacement
(green-screen or segmentation cut-paste), random affine
transforms (£15° rotation, 0.8—1.2 scale), and slight
motion blur simulate natural capture variability.

3.3 Detection with YOLOVS

We adopt YOLOVSs or YOLOv5n depending on device
constraints. Input is 640x640. The backbone uses CSP
blocks; the neck is PAN-FPN; the head predicts
box/obj/class with CloU loss. We train 100—150 epochs
with cosine LR decay, SGD or AdamW (initial LR ~ 0.01
for SGD, 0.001 for AdamW), batch size 32-64 (AMP
enabled). Mosaic/MixUp are enabled early and faded out
in the final epochs to stabilize localization. The detector
outputs up to K=4 boxes (two hands, face, and an “upper-
body” helper if desired) with NMS at IoU=0.5 and score
threshold=0.25-0.35.

3.4 ROI Tracking and Preprocessing

To stabilize the classifier, we maintain identity-consistent
ROIs across frames. A lightweight tracker (IoU-based
assignment with a short-term Kalman filter) preserves
left/right identity even with momentary occlusions. We
crop detected hands with a padding ratio (e.g., 1.3x box
size) and resize to 160x160 or 192x192 for the classifier.
Histogram equalization (CLAHE) and per-channel
standardization reduce illumination variance.

3.5 CNN Classifier

Architecture. A compact CNN (e.g., depthwise-separable
“Mobile-ResNet-18” or Conv-BN-ReLU blocks with
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Squeeze-and-Excitation) keeps <5 M parameters. The

final embedding layer (e.g., 256-D) feeds a softmax over

C classes.

Loss and Regularization. Cross-entropy with label

smoothing (¢=0.05-0.1) plus focal modulation (y=1.5—

2.0) handles class imbalance and hard negatives. Dropout

(p=0.2) on the penultimate layer and weight decay (le-4)

prevent overfitting.

Temporal Extension (for dynamic signs). We stack 8—

16 consecutive ROI frames (stride 2-3) and pass them

through a temporal encoder:

e Option A: 1D temporal convolution over per-
frame embeddings (kernel sizes 3/5), or
e Option B: a tiny GRU (hidden 128) over

embeddings.
Both add <1 ms per frame on GPU and modest
overhead on edge devices.
Optimization. AdamW with LR=3e-4, cosine
schedule, 60-80 epochs; early stopping on
macro-F1. Mixed precision and channels-last
memory layout reduce latency.

3.6 Post-Processing

We apply temporal smoothing (exponential moving

average of class probabilities with 0~0.6) and min-

duration constraints (emit a decision only if confidence

exceeds 1=0.75 for >6 frames). For two-handed signs, we

fuse left/right predictions by averaging logits, with hand-

role priors if available.

3.7 Evaluation Metrics

e Detection: mAP@0.5

(primary),
precision/recall, and mean IoU.

e C(Classification: top-1 accuracy, macro-Fl
(robust to class imbalance).

e Runtime: per-frame latency and effective FPS
(end-to-end).

¢ Robustness: performance under controlled
perturbations—low light, motion blur, partial

occlusion.

STATISTICAL ANALYSIS

We compare three system variants on a subject-disjoint
test set:

e Baseline (Whole-Frame CNN): classifier
trained directly on 224x224 full frames, no
detection.

e  Proposed (YOLOVS + CNN): ROI cropping via
YOLOVS, per-frame classification.

e  Proposed+Temporal: adds an 8-frame temporal
encoder and smoothing.

Hardware: NVIDIA RTX-class GPU for primary
numbers; we also note edge behavior qualitatively. Each
number is an average over three runs; = values denote

standard deviation across runs.

System | Clas | Macr | Detector | End- | FP
Variant s o-F1 | mAP@0 | to-End | S
Acc. S Latenc
(%) y (ms)
Baselin | 84.2 | 0.831 — 18.7+ | 53
e + 0.3
(Whole | 0.6
-Frame)
YOLOv | 94.8 | 0.943 0.928 24,1+ | 41
5+ + 0.5
CNN 0.4
YOLOv | 96.1 | 0.957 0.928 27.8+ | 36
5+ + 0.6
CNN+ | 0.5
Tempor
al

Notes: Latency is measured from camera frame arrival to
final label emission, including detection, ROI crop,
classification, and post-processing. FPS is the reciprocal
of latency for a single stream.

SIMULATION RESEARCH

5.1 Experimental Setup

Environment. Python 3.10, PyTorch backend with
CUDA/AMP, OpenCYV for capture and preprocessing. We
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fix seeds for reproducibility, log with TensorBoard/W &B,
and checkpoint the best macro-F1.
Data Curation.

e Public static signs (alphabets): used for initial
convergence and hyperparameter search.

e  Dynamic gestures subset: 12-20 frequently used
signs recorded at 30 FPS (8-12 signers, 3
backgrounds, 2 lighting conditions).

e  Each signer appears in only one split; we ensure
per-class coverage across splits.

Training Schedule.

e Detector: 120 epochs, batch 48, Mosaic on for
first 80 epochs then off;, NMS IoU=0.5,
conf=0.3.

e Classifier: 70 epochs, batch 128, LR warmup 5
epochs — cosine cooldown; label smoothing
€¢=0.1; random erasing p=0.25 focused near
fingertips.

e Temporal Encoder: trained after freezing the
CNN feature extractor for 10 epochs, then fine-
tuned end-to-end for 20 epochs with a small LR
(le-4).

Ablations. We individually disable (i) ROI cropping (use
whole frame), (ii) color jitter, (iii) temporal encoder, and
(iv) confidence smoothing to quantify their contributions.
Robustness Protocol. We replay test videos with
synthetic degradations:

e Low light: global brightness —35% and +15%
noise;

e Motion blur: kernel size 7,

e  Occlusion: 20-30% random mask near the wrist
or fingertips;

e  Background clutter: overlay moving distractors.
Edge Deployment Check. We export to
ONNX/TensorRT and run on an embedded GPU SoC. The
detector uses YOLOVSn; the classifier keeps depthwise
separable blocks to fit cache and maintain throughput.

5.2 Observations

1. ROI Matters. Removing ROI cropping drops
accuracy from 94.8% to ~84-86%, confirming
that the detector’s spatial prior helps the
classifier focus on relevant pixels.

2. Temporal Helps More for Dynamic Signs. On
purely static alphabets, the temporal encoder
offers marginal gains; on dynamic gestures,
macro-F1 increases 2—4 points by suppressing
frame-to-frame flicker.

3. Augmentation is Insurance. Color jitter and
random erasing reduce overfitting to specific
lighting and ring/bracelet artifacts; removing
them increases false positives under low light
and motion blur.

4. Latency Budget. YOLOv5s + CNN sustains
~41 FPS on a desktop GPU with end-to-end
latency ~24 ms; on an embedded GPU,
YOLOvV5n + quantized CNN maintains ~18-22
FPS, acceptable for kiosk/mobile use.

5. Failure Modes. Confusions cluster among
visually similar signs (e.g., small changes in
finger curling) and during rapid transitions. Two-
handed, symmetric signs cause occasional
left/right role swaps; adding a face landmark
prior helps.

RESULTS

6.1 Accuracy and Detection Quality

The proposed pipeline achieves 94.8% top-1 accuracy
and 0.943 macro-F1 in per-frame classification with
YOLOV5-guided ROIs, and 96.1% / 0.957 with the short
temporal encoder. Detection quality at mAP@0.5 = 0.928
is sufficient to produce stable crops; most classification
errors arise even when boxes are correct, indicating room
for better fine-grained shape modeling rather than
localization.

6.2 Latency and Throughput

End-to-end latency rises from 18.7 ms (baseline) to 24.1
ms (with detection) and 27.8 ms (with temporal encoder),

still exceeding the 30 FPS real-time threshold. Practical
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systems benefit from batching two frames for the detector
(once every other frame) and reusing tracks to cut average
latency by ~2 ms without harming accuracy.

6.3 Robustness Under Perturbations

Under low-light and motion-blur tests, the baseline
whole-frame model degrades by 7—10 accuracy points.
ROI-based models degrade by 3—5 points, indicating
better invariance; adding temporal smoothing recovers
~1-2 points. Occlusion affects two-handed signs
disproportionately; incorporating the face ROI as
contextual evidence marginally reduces such errors.

6.4 Ablation Insights

e No ROI: —10.3 points accuracy, confirming the
value of detection.

e No Color Jitter: —2.1 points on night-mode
scenes.

e No Temporal: —1.3 points overall, —3.6 on
dynamic subset.

e No Smoothing: increases short-term label
flicker; macro-F1 unchanged, but user
experience deteriorates (unstable subtitles).

6.5 User-Centered Considerations

e Signer Diversity. Subject-disjoint evaluation
shows a modest drop (~2—3 points) compared to
random split, consistent with style differences.
Techniques like prototype learning (class
centroids) or feature normalization by signer
could improve fairness.

e  Privacy. Inference runs locally; raw frames need
not leave the device. Storing only anonymized
embeddings or on-device transcripts reduces
risk.

e Accessibility. A confidence gauge and “hold to
confirm” UI mitigate misreads in safety-critical
contexts (e.g., issuing commands).

6.6 Qualitative Examples (described)
We observe that the detector cleanly isolates both hands
even in cluttered backgrounds. The classifier correctly

distinguishes subtle shapes such as “A” vs “S” in an

alphabet set when wrist rotation differs by ~10-15°.
Misses often occur during fast transitions where only 23
frames depict the canonical pose; smoothing and a
minimum-duration rule reduce such blips.
CONCLUSION

This manuscript presented a real-time sign language
recognition pipeline that marries YOLOVS detection
with a lightweight CNN classifier. The detector
eliminates background clutter and normalizes scale, while
the classifier specializes in fine-grained hand shapes; an
optional short temporal encoder stabilizes dynamic signs.
A carefully engineered training recipe—subject-disjoint
splits, balanced sampling, label smoothing with focal
modulation, and hand-centric augmentations—yields
substantial gains over a whole-frame baseline. In a
controlled simulation study, the proposed system
improves top-1 accuracy by roughly 10 percentage
points and maintains >30 FPS on desktop GPUs (and
practical FPS on embedded devices), satisfying the
latency needs of assistive and interactive applications.
Limitations include dependence on reliable detection
under extreme occlusions, reduced performance on
visually  near-identical signs (especially when
grammatical context would otherwise disambiguate), and
a focus on isolated rather than continuous sentence-level
recognition. Future extensions should integrate: (i)
pose/landmark streams with graph or transformer
encoders for richer motion modeling, (ii) signer-adaptive
normalization or meta-learning for better cross-person
transfer, (iii) language-model priors (n-gram or ASR-style
decoders) for continuous SLR, and (iv) multilingual
training to handle Indian, American, and other sign
languages with consistent interfaces.

Overall, the YOLOv5+CNN approach offers a pragmatic
balance of accuracy, speed, and deployability, making
it a strong foundation for classroom captioners, public-
service kiosks, and mobile translation aids where real-
time response is non-negotiable.
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