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ABSTRACT

The rapid growth of urban traffic has outpaced the
capabilities of traditional loop sensors and manual
surveys, creating an urgent need for scalable, low-latency,
and cost-effective traffic intelligence. This manuscript
presents an end-to-end, Al-powered system for vehicle
counting and classification designed for smart-city
deployments. The pipeline integrates single-shot object
detection with multi-object tracking to produce de-
duplicated counts and fine-grained classes across
heterogeneous camera views. The proposed method
emphasizes practical constraints: camera placement
variability, day-night domain shifts, adverse weather,
heavy occlusions, and compute limits on edge devices. We
fuse a one-stage detector (for bounding-box localization
and coarse class labels) with an appearance-embedding
tracker to maintain identities through occlusions and
support virtual line-crossing logic that yields robust
counts. An optional attribute head refines classes (e.g.,
car, bus, truck, two-wheeler, auto-rickshaw) using shape

priors and aspect ratios.
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Fig.1 AI-Powered Vehicle Counting,Source([1])
We also introduce normalization techniques (perspective-
aware regions of interest, homography-based scale cues,
and temporal smoothing) that stabilize predictions under
viewpoint changes. Simulation-based evaluations
(CARLA + SUMO) emulate dense intersections with
configurable lighting and weather, producing 100k
labeled frames across five junction archetypes. The
system attains high detection accuracy (mAP@0.5 = 0.81),
strong tracking (IDF1 = 0.78), and reliable counts (overall
MAE = 2.3 vehicles/minute lane-crossing) at 25-30 FPS
on an NVIDIA Jetson-class edge device via INTS8
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quantization. A statistical analysis demonstrates
consistent performance across classes and time-of-day,
with night-time recall improved by temporal voting. The
results suggest the approach is deployable at city scale,
enabling real-time traffic planning, adaptive signal
control, and safety analytics with modest infrastructure
upgrades.
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INTRODUCTION

Urban administrators increasingly rely on real-time traffic
analytics to inform congestion mitigation, road pricing, safety
interventions, and transit planning. Historically, cities
measured flows using inductive loops, pneumatic tubes, and
occasional manual counts—methods that are costly to
maintain, limited in spatial coverage, and poorly suited to
modern multimodal roads featuring two-wheelers, buses,
trucks, auto-rickshaws, bicycles, and emerging micro-
mobility. Networked cameras, already prevalent for security,
provide a cost-effective foundation for continuous, wide-area
traffic sensing if coupled with robust computer vision.
However, turning video into trustworthy counts and classes is
nontrivial. Urban scenes suffer from parallax and perspective
distortion, large intra-class variability (e.g., trucks and mini-
trucks), dense occlusions at intersections, heterogeneous
camera angles and heights, severe night-time noise, glare,
rain streaks, and sensor compression artifacts. Moreover,
operational deployments must function on low-power edge
hardware to reduce bandwidth and preserve privacy. Models
should update quickly in response to scene drift and seasonal

changes without frequent site visits.

-~ "\Q e ‘1

r

Fig.2 Al-Powered Vehicle Counting and Classification in
Smart Cities,Source([2])

This manuscript addresses these challenges through a
deployable Al pipeline that unifies detection, tracking, and
counting into a single, latency-aware workflow. Our design
goals are: (i) accuracy under occlusion and domain shift; (ii)
de-duplication using identity-preserving tracking; (iii) low-
latency inference on edge devices via model compression;
(iv) minimal calibration demands; and (v) clear, auditable
outputs consumable by traffic-control systems and
dashboards. The method uses a one-stage detector to localize
vehicles and infer coarse classes, a re-identification (re-ID)—
enhanced tracker to maintain identities, and a line-
crossing/ROI logic to convert tracks to counts with
directionality. We incorporate homography-based scale hints
to stabilize class decisions (e.g., distinguishing bus vs. truck)
and implement temporal ensembling to mitigate night noise.
A simulation-based evaluation in CARLA and SUMO
generates realistic, labeled traffic across weather and lighting,
enabling side-by-side comparisons of design choices
(with/without tracking, quantized vs. full-precision, day vs.
night).

The contributions are threefold:

1. A practical, edge-ready architecture for joint vehicle
detection, tracking, counting, and classification with
explicit de-duplication.

2. Perspective-aware normalization and temporal

smoothing that improve low-light and occlusion
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robustness ~ without  expensive  per-camera
calibration.

3. A comprehensive simulation study reflecting smart-
city constraints (compute budget, variable
viewpoints), showing strong accuracy—latency
trade-offs and operational reliability.

LITERATURE REVIEW

Classical sensing and early vision: Loop detectors and
magnetic sensors deliver lane-specific counts but require
intrusive installation and maintenance, and cannot easily
differentiate finer classes or directionality on multi-lane
roads. Early classical vision systems (background
subtraction, optical flow) struggled with shadows, camera
shake, and weather artifacts. Hand-crafted features (HOG,
Haar, SIFT) improved robustness marginally, but suffered
from poor generalization in complex traffic.

Deep detectors: Single-shot detectors (e.g., modern YOLO
families, EfficientDet) and two-stage detectors (e.g.,
Faster/Mask R-CNN) dominate vehicle detection due to their
accuracy—speed balance. One-stage models are favored on
edge devices; architectural advances such as CSP backbones,
PAN/FPN necks, and decoupled heads produce higher mAP
with fewer parameters. These models can output coarse
vehicle classes directly, but class granularity often degrades
under small object sizes or extreme angles.

Tracking for de-duplication: Multi-object tracking (MOT)
couples motion models (Kalman filters) with association via
Hungarian matching over IoU and learned appearance
embeddings (DeepSORT, ByteTrack). Appearance features
reduce ID switches in crowded scenes. For counting, stable
track IDs prevent multiple tallies of the same vehicle as it
traverses adjacent ROIs or frames. Tracking also enables
velocity estimation via inter-frame displacement under a
known homography.

Counting logic: Two operational paradigms prevail: (i)
virtual line crossing, which increments counts when a
track’s centroid crosses a predefined polyline in a specified
direction; and (ii)) ROI-based persistence, which tallies a

vehicle if its track persists beyond a dwell-time threshold

within a polygon (e.g., stop bar). Line crossing is
interpretable and less sensitive to stop-and-go traffic; ROI
dwell supports queue-length estimation.

Domain shift and night-time performance: Day-night
changes, headlight glare, rain, and fog impose domain shifts.
Strategies include exposure-robust augmentation, synthetic
data, low-light enhancement, and temporal ensembling
(voting over short windows). Homography-based scale
normalization can stabilize class features, while confidence
calibration curbs false positives at night.

Edge readiness: INT8 quantization and TensorRT
compilation preserve throughput with acceptable accuracy
loss. Layer fusion, sparsity exploitation, and input-size tuning
(e.g., 960x544 rather than 1280%720) improve FPS. Pipeline-
level optimizations (batched decoding, asynchronous RTSP
ingestion, zero-copy transfers) reduce end-to-end latency.
Multi-camera and city-scale needs: Deployments must
handle heterogeneous streams and outages. Lightweight re-
ID can stitch trajectories across partially overlapping cameras
(e.g., corridor monitoring) to avoid double counting. Kafka-
like buses and time-series databases (TSDB) are common for
streaming analytics, while privacy-by-design favors on-prem
inference and ephemeral video storage.

In summary, the state of the art provides strong building
blocks—fast detectors, robust trackers, and calibration-light
counting—but practical urban deployments require careful
integration, domain adaptation, and edge-first engineering,
which this work addresses.

METHODOLOGY

System Overview

Our pipeline comprises five stages:

1. Ingest: RTSP video from pole-mounted cameras at
25-30 FPS, 1080p or 720p.

2. Preprocess: Frame deinterlacing if needed, gamma
correction in low light, letterboxing to model input
while preserving aspect ratio.

3. Detection + Classification: A one-stage detector
with a CSP backbone and PAN neck outputs

bounding boxes, objectness, and coarse class logits
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for {car, bus, truck, two-wheeler, auto-rickshaw,
others}.

4. Tracking: A Kalman filter predicts motion;
association uses loU+cosine distance over 128-D
appearance embeddings from a lightweight CNN
branch. This reduces ID switches and supports long
occlusions.

5. Counting & Analytics: Virtual lines/polygons are
defined per camera. A count event triggers when a
track’s centroid crosses a line in the permitted
direction (with hysteresis) or persists within an ROI
beyond a dwell threshold. We assign counts by the
track’s modal class over its lifespan (temporal
voting) to reduce jitter.

Camera Normalization & Homography
For each scene, we estimate a coarse planar homography HH
from four annotated points (e.g., stop line corners). We apply:

e Scale hint: pixel-to-metric scaling stabilizes
classification where apparent box sizes vary with
depth.

e Speed estimate: v=Ap/Atv =\Delta p / \Delta t after
warping centroids by HH; improves plausibility
filtering (e.g., rejecting two-wheeler “buses”).

o Perspective-aware ROIs: counting lines are placed
near the road plane, improving line-crossing
consistency.

Temporal Ensembling and Confidence Calibration

To counter night-time noise and rain streaks, we smooth class
logits by exponential moving average over the last k=5k=5
frames per track. We calibrate detector confidences using
temperature scaling on a validation split, reducing
overconfident false positives in low light.

De-duplication and Short-Track Handling

Short-lived tracks (< 6 frames) that do not cross a counting
line are ignored. If a track fragments, we reconnect segments
via appearance similarity and motion continuity within a 0.6-
second gap. This prevents double counting across brief
occlusions (e.g., buses passing behind trucks).

Edge Inference and Compression

We export the detector to ONNX, then build an INTS
TensorRT engine with per-tensor calibration. On NVIDIA
Jetson Xavier/Orin, we achieve 25-30 FPS at 960x544 input.
A CPU-only fallback uses mixed-precision quantization
aware training (QAT) for x86 with AVX2. The tracker runs in
parallel threads, and Kafka transports count events to a TSDB
(e.g., 1-second aggregation).
Pseudocode (Core Loop)
for frame in stream:
dets = detector(frame) #
[x,y,W,h,score,class_logits]
feats = appearance_encoder(frame, dets) # 128-D per det
tracks = tracker.update(dets, feats) # Kalman+ Hungarian
for t in tracks:

if t.crossed(line_A, dir="N->S"):

class_t=temporal mode(t.class logits_hist)
counts[class_t] +=1
log_event(t.id, class_t, ts)

Metrics

e Detection: mAP@0.5, AP per class.

e Tracking: IDF1, MOTA, ID switches (IDs).

e Counting: Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) vs. ground
truth; direction-wise accuracy.

e (Classification: Precision, recall, F1 per class, macro
averages.

e Latency: end-to-end pipeline FPS and 95th
percentile latency.

Data and Augmentations

Synthetic and real segments compose training data. Synthetic
data (CARLA) provides controlled labels; real snippets (if
available) are used for fine-tuning. Augmentations include
mosaic, motion blur, rain streak overlays, low-light gamma
shifts, and specular highlight jitter. Class imbalance is
handled by focal loss and sample reweighting (e.g., trucks
appear less frequently than cars).

STATISTICAL ANALYSIS

We report precision, recall, and F1 for five vehicle classes,

averaged across five simulated intersections under day and

25
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night scenes. The table also shows absolute count MAE (per
minute) for each class using line-crossing on the main
inbound approach. Values reflect the best model (INTS,

temporal ensembling, homography scale hint).

Class Precision | Recall | F1 Count MAE
(veh/min)

Car 0.92 0.89 | 0.90 1.1

Bus 0.90 0.86 | 0.88 0.3

Truck 0.88 0.84 | 0.86 0.4

Two- 0.87 0.85 | 0.86 0.8

wheeler

Auto- 0.85 0.81 | 0.83 0.5

rickshaw

Macro 0.88 0.85 | 0.87 0.62

Avg.

Chart Title
0.94
0.92

0.9
0.88 0.8
0.88 0.87
0.86 0.86

0.86 .85
0.84
0.82

0.8

Truck Two-wheeler

M Precision M Recall F1

Fig.3 Statistical Analysis
Notes: (i) Night scenes reduce recall by ~0.03 on average
without temporal ensembling; with ensembling, the recall gap
shrinks to ~0.01. (ii) Two-wheelers and auto-rickshaws are
more affected by occlusions and headlight glare; perspective-
aware ROIs and temporal voting narrow this gap.
SIMULATION RESEARCH AND RESULTS
Environment
We build a composite simulation using CARLA (road
geometry, vehicles, sensors) and SUMO (traffic flows and

signal timing). Five intersection archetypes are modeled: (A)

four-way with protected left turns; (B) T-junction with bus
bay; (C) multi-lane roundabout; (D) pedestrian-heavy urban
crosswalk; (E) corridor with staggered cameras. Each scene
runs with stochastic traffic demand (Poisson arrivals), class
priors matching typical Indian urban shares (high two-
wheeler proportion, presence of auto-rickshaws), and
variable signal plans. We place fixed cameras at 6-9 m
mounting heights and 20-35° tilt angles. Weather regimes
include clear, light rain, heavy rain, and fog; lighting covers
morning, noon, dusk, and night with headlight artifacts.
Data generation:

e 100,000 annotated frames at 25-30 FPS, 1080p.

e  Train/val/test split: 70/15/15 by scene and time-of-
day to avoid leakage.

e  Ground-truth counts: virtual loop sensors in
simulation at the same line positions used by the
algorithm.

e Labels: bounding boxes and classes; track IDs
derived from simulator vehicle IDs.

Implementation Details

e Detector: one-stage model with CSPDarknet-like
backbone, PAN neck, decoupled detection heads.
Input 960x544; batch size 32 during training; focal
loss y=2\gamma=2, label
€=0.05\epsilon=0.05.

smoothing

e Classifier refinement: attribute head (binary logits
for bus-like length, truck-like height, two-wheeler
aspect). The final class per detection is the argmax
of class logits + attribute priors.

e Tracker: Kalman with constant-velocity model,
IoU + cosine distance
(Acos=0.6\lambda_{cos}=0.6) for association; max
age 30 frames; min hits 3; appearance embedding is
a 128-D global pooled feature from a MobileNet-
like branch.

e Counting: pair of directional lines per approach; 20-
pixel hysteresis band; duplicate suppression if a
track re-crosses within 1.2 s in opposite direction

(U-turn filter).
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Edge: TensorRT INTS; per-tensor calibration with

2k images balanced across time-of-day;

asynchronous pipeline for decode—infer—track;

gRPC exporter for events.

Ablations

We study three design choices:

1.

Tracking vs. frame-wise counting: Without
tracking, counts rely on non-maximum suppression
and heuristics (center-line intersection per frame).
This over-counts in stop-and-go traffic. Tracking
reduces double counts and improves MAE from 3.7
to 2.3 veh/min (—37.8%).

Temporal ensembling (TE): TE over 5 frames
improves night recall by +0.02 with negligible
precision loss; IDF1 rises from 0.75 to 0.78 due to
fewer class flips causing re-association issues.
Homography scale hint (H): Adding H improves
bus vs. truck separability (F1 +0.02 for both) and
reduces auto-rickshaw misclassification by using

size priors near the road plane.

Quantitative Results

On the held-out test set across all scenes and conditions:

Detection: mAP@0.5 = 0.81 (cars 0.86, buses 0.80,
trucks 0.78, two-wheelers 0.79, auto-rickshaws
0.74).

Tracking: IDF1 = 0.78; MOTA = 0.73; ID switches
= 0.34 per track-minute (median).

Counting: overall MAE = 2.3 vehicles/minute per
approach; MAPE = 6.5% on daytime, 8.1% at night
with TE; direction classification accuracy = 97.2%.
Classification: macro precision/recall/F1 reported
in the Statistical Analysis table; class-wise
confusion most notable between auto-rickshaw vs.
small cars at oblique angles, mitigated by TE + H.
Latency: 27.4 FPS (p95 latency 58 ms) on Jetson
Orin NX at 960x544; 31.8 FPS on desktop RTX

A2000 at 1280%720 FP16.

Qualitative Observations

Occlusion robustness: The re-ID embeddings help
maintain vehicle identity when a bus occludes two-
wheelers near stop bars, cutting false double counts
notably at rush-hour platoons.

Night scenes: Headlight bloom generates spurious
detections in frame-wise methods; TE + calibrated
thresholds reduce this.

Rain/fog: Light rain has modest impact; heavy rain
reduces small-object AP (two-wheelers) due to rain
streaks and wiper occlusions. Temporal voting
compensates partially.

Edge failures: Rare CPU spikes during RTSP jitter
can momentarily stall inference; buffering and back-
pressure settings stabilize throughput without frame

drops.

Error Analysis

We inspect miscounts > 4 veh/min on 20 random 1-minute

clips:

40% due to long-term occlusion behind
buses/trucks; potential remedy: multi-camera fusion
or overhead mounting.

30% due to tight turns near the line, where
centroids cross ambiguously; remedy: curved
counting lines aligned with lane geometry.

20% due to small-object loss (two-wheelers) at
night; remedy: super-resolution on ROIs or class-
specific priors.

10% due to re-entry when vehicles U-turn or drift
across approaches; remedy: longer track memory

and direction filters.

CONCLUSION

This work proposes a deployable, edge-aware pipeline for Al-

powered vehicle counting and classification tailored to smart-

city environments. By coupling a one-stage detector with an

appearance-augmented tracker and perspective-aware line-

crossing, the system achieves accurate, de-duplicated counts

and reliable class labels across varied scenes, lighting, and

weather. Temporal ensembling and light-touch homography

yield tangible gains at night and in occlusion-prone settings,
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while INT8 quantization sustains real-time throughput on
modest hardware.

Simulation results across five intersection archetypes indicate
strong performance: detection mAP@0.5 of 0.81, tracking
IDF1 of 0.78, and counting MAE of 2.3 vehicles/minute—
sufficient for adaptive signal timing, demand estimation, and
safety diagnostics. Error analysis highlights residual
challenges: persistent occlusions behind large wvehicles,
ambiguous centroid crossings at tight turns, and small-object
degradation in heavy rain or low light. These point to next
steps: (i) multi-camera association to bridge occlusions and
avoid double counts across views; (ii) dynamic, lane-aligned
counting curves derived from lane-detection networks; (iii)
class-specific enhancement (e.g., super-resolution or small-
object expert heads) for two-wheelers and auto-rickshaws;
(iv) semi-supervised domain adaptation to continuously
refine models using confident pseudo-labels; and (v) privacy-
preserving analytics with on-prem retention and event-only
export.

Overall, the proposed approach balances accuracy,
interpretability, and operational practicality. It leverages
existing CCTV assets, requires minimal calibration, and fits
within the compute envelope of affordable edge devices. As
cities push toward responsive traffic management and Vision
Zero initiatives, such Al-powered counting and classification
systems can provide the granular, timely data needed to
manage congestion, prioritize transit, and improve road safety

without costly new infrastructure.
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