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ABSTRACT 

The rapid growth of urban traffic has outpaced the 

capabilities of traditional loop sensors and manual 

surveys, creating an urgent need for scalable, low-latency, 

and cost-effective traffic intelligence. This manuscript 

presents an end-to-end, AI-powered system for vehicle 

counting and classification designed for smart-city 

deployments. The pipeline integrates single-shot object 

detection with multi-object tracking to produce de-

duplicated counts and fine-grained classes across 

heterogeneous camera views. The proposed method 

emphasizes practical constraints: camera placement 

variability, day–night domain shifts, adverse weather, 

heavy occlusions, and compute limits on edge devices. We 

fuse a one-stage detector (for bounding-box localization 

and coarse class labels) with an appearance-embedding 

tracker to maintain identities through occlusions and 

support virtual line-crossing logic that yields robust 

counts. An optional attribute head refines classes (e.g., 

car, bus, truck, two-wheeler, auto-rickshaw) using shape 

priors and aspect ratios.  

 

Fig.1 AI-Powered Vehicle Counting,Source([1]) 

We also introduce normalization techniques (perspective-

aware regions of interest, homography-based scale cues, 

and temporal smoothing) that stabilize predictions under 

viewpoint changes. Simulation-based evaluations 

(CARLA + SUMO) emulate dense intersections with 

configurable lighting and weather, producing 100k 

labeled frames across five junction archetypes. The 

system attains high detection accuracy (mAP@0.5 = 0.81), 

strong tracking (IDF1 = 0.78), and reliable counts (overall 

MAE = 2.3 vehicles/minute lane-crossing) at 25–30 FPS 

on an NVIDIA Jetson-class edge device via INT8 

http://www.ijarcse.org/
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F1424-8220%2F19%2F20%2F4588&psig=AOvVaw3FpYK3HhBzb_r19IulQUaI&ust=1754939897030000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNCI69r6gI8DFQAAAAAdAAAAABAE
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quantization. A statistical analysis demonstrates 

consistent performance across classes and time-of-day, 

with night-time recall improved by temporal voting. The 

results suggest the approach is deployable at city scale, 

enabling real-time traffic planning, adaptive signal 

control, and safety analytics with modest infrastructure 

upgrades. 
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multi-object tracking; deep learning; edge AI; traffic 
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INTRODUCTION 

Urban administrators increasingly rely on real-time traffic 

analytics to inform congestion mitigation, road pricing, safety 

interventions, and transit planning. Historically, cities 

measured flows using inductive loops, pneumatic tubes, and 

occasional manual counts—methods that are costly to 

maintain, limited in spatial coverage, and poorly suited to 

modern multimodal roads featuring two-wheelers, buses, 

trucks, auto-rickshaws, bicycles, and emerging micro-

mobility. Networked cameras, already prevalent for security, 

provide a cost-effective foundation for continuous, wide-area 

traffic sensing if coupled with robust computer vision. 

However, turning video into trustworthy counts and classes is 

nontrivial. Urban scenes suffer from parallax and perspective 

distortion, large intra-class variability (e.g., trucks and mini-

trucks), dense occlusions at intersections, heterogeneous 

camera angles and heights, severe night-time noise, glare, 

rain streaks, and sensor compression artifacts. Moreover, 

operational deployments must function on low-power edge 

hardware to reduce bandwidth and preserve privacy. Models 

should update quickly in response to scene drift and seasonal 

changes without frequent site visits. 

 

 

Fig.2 AI-Powered Vehicle Counting and Classification in 

Smart Cities,Source([2]) 

This manuscript addresses these challenges through a 

deployable AI pipeline that unifies detection, tracking, and 

counting into a single, latency-aware workflow. Our design 

goals are: (i) accuracy under occlusion and domain shift; (ii) 

de-duplication using identity-preserving tracking; (iii) low-

latency inference on edge devices via model compression; 

(iv) minimal calibration demands; and (v) clear, auditable 

outputs consumable by traffic-control systems and 

dashboards. The method uses a one-stage detector to localize 

vehicles and infer coarse classes, a re-identification (re-ID)–

enhanced tracker to maintain identities, and a line-

crossing/ROI logic to convert tracks to counts with 

directionality. We incorporate homography-based scale hints 

to stabilize class decisions (e.g., distinguishing bus vs. truck) 

and implement temporal ensembling to mitigate night noise. 

A simulation-based evaluation in CARLA and SUMO 

generates realistic, labeled traffic across weather and lighting, 

enabling side-by-side comparisons of design choices 

(with/without tracking, quantized vs. full-precision, day vs. 

night). 

The contributions are threefold: 

1. A practical, edge-ready architecture for joint vehicle 

detection, tracking, counting, and classification with 

explicit de-duplication. 

2. Perspective-aware normalization and temporal 

smoothing that improve low-light and occlusion 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2227-7080%2F11%2F5%2F117&psig=AOvVaw3FpYK3HhBzb_r19IulQUaI&ust=1754939897030000&source=images&cd=vfe&opi=89978449&ved=0CBUQjRxqFwoTCNCI69r6gI8DFQAAAAAdAAAAABAT
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robustness without expensive per-camera 

calibration. 

3. A comprehensive simulation study reflecting smart-

city constraints (compute budget, variable 

viewpoints), showing strong accuracy–latency 

trade-offs and operational reliability. 

LITERATURE REVIEW 

Classical sensing and early vision: Loop detectors and 

magnetic sensors deliver lane-specific counts but require 

intrusive installation and maintenance, and cannot easily 

differentiate finer classes or directionality on multi-lane 

roads. Early classical vision systems (background 

subtraction, optical flow) struggled with shadows, camera 

shake, and weather artifacts. Hand-crafted features (HOG, 

Haar, SIFT) improved robustness marginally, but suffered 

from poor generalization in complex traffic. 

Deep detectors: Single-shot detectors (e.g., modern YOLO 

families, EfficientDet) and two-stage detectors (e.g., 

Faster/Mask R-CNN) dominate vehicle detection due to their 

accuracy–speed balance. One-stage models are favored on 

edge devices; architectural advances such as CSP backbones, 

PAN/FPN necks, and decoupled heads produce higher mAP 

with fewer parameters. These models can output coarse 

vehicle classes directly, but class granularity often degrades 

under small object sizes or extreme angles. 

Tracking for de-duplication: Multi-object tracking (MOT) 

couples motion models (Kalman filters) with association via 

Hungarian matching over IoU and learned appearance 

embeddings (DeepSORT, ByteTrack). Appearance features 

reduce ID switches in crowded scenes. For counting, stable 

track IDs prevent multiple tallies of the same vehicle as it 

traverses adjacent ROIs or frames. Tracking also enables 

velocity estimation via inter-frame displacement under a 

known homography. 

Counting logic: Two operational paradigms prevail: (i) 

virtual line crossing, which increments counts when a 

track’s centroid crosses a predefined polyline in a specified 

direction; and (ii) ROI-based persistence, which tallies a 

vehicle if its track persists beyond a dwell-time threshold 

within a polygon (e.g., stop bar). Line crossing is 

interpretable and less sensitive to stop-and-go traffic; ROI 

dwell supports queue-length estimation. 

Domain shift and night-time performance: Day–night 

changes, headlight glare, rain, and fog impose domain shifts. 

Strategies include exposure-robust augmentation, synthetic 

data, low-light enhancement, and temporal ensembling 

(voting over short windows). Homography-based scale 

normalization can stabilize class features, while confidence 

calibration curbs false positives at night. 

Edge readiness: INT8 quantization and TensorRT 

compilation preserve throughput with acceptable accuracy 

loss. Layer fusion, sparsity exploitation, and input-size tuning 

(e.g., 960×544 rather than 1280×720) improve FPS. Pipeline-

level optimizations (batched decoding, asynchronous RTSP 

ingestion, zero-copy transfers) reduce end-to-end latency. 

Multi-camera and city-scale needs: Deployments must 

handle heterogeneous streams and outages. Lightweight re-

ID can stitch trajectories across partially overlapping cameras 

(e.g., corridor monitoring) to avoid double counting. Kafka-

like buses and time-series databases (TSDB) are common for 

streaming analytics, while privacy-by-design favors on-prem 

inference and ephemeral video storage. 

In summary, the state of the art provides strong building 

blocks—fast detectors, robust trackers, and calibration-light 

counting—but practical urban deployments require careful 

integration, domain adaptation, and edge-first engineering, 

which this work addresses. 

METHODOLOGY 

System Overview 

Our pipeline comprises five stages: 

1. Ingest: RTSP video from pole-mounted cameras at 

25–30 FPS, 1080p or 720p. 

2. Preprocess: Frame deinterlacing if needed, gamma 

correction in low light, letterboxing to model input 

while preserving aspect ratio. 

3. Detection + Classification: A one-stage detector 

with a CSP backbone and PAN neck outputs 

bounding boxes, objectness, and coarse class logits 
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for {car, bus, truck, two-wheeler, auto-rickshaw, 

others}. 

4. Tracking: A Kalman filter predicts motion; 

association uses IoU+cosine distance over 128-D 

appearance embeddings from a lightweight CNN 

branch. This reduces ID switches and supports long 

occlusions. 

5. Counting & Analytics: Virtual lines/polygons are 

defined per camera. A count event triggers when a 

track’s centroid crosses a line in the permitted 

direction (with hysteresis) or persists within an ROI 

beyond a dwell threshold. We assign counts by the 

track’s modal class over its lifespan (temporal 

voting) to reduce jitter. 

Camera Normalization & Homography 

For each scene, we estimate a coarse planar homography HH 

from four annotated points (e.g., stop line corners). We apply: 

• Scale hint: pixel-to-metric scaling stabilizes 

classification where apparent box sizes vary with 

depth. 

• Speed estimate: v=Δp/Δtv = \Delta p / \Delta t after 

warping centroids by HH; improves plausibility 

filtering (e.g., rejecting two-wheeler “buses”). 

• Perspective-aware ROIs: counting lines are placed 

near the road plane, improving line-crossing 

consistency. 

Temporal Ensembling and Confidence Calibration 

To counter night-time noise and rain streaks, we smooth class 

logits by exponential moving average over the last k=5k=5 

frames per track. We calibrate detector confidences using 

temperature scaling on a validation split, reducing 

overconfident false positives in low light. 

De-duplication and Short-Track Handling 

Short-lived tracks (< 6 frames) that do not cross a counting 

line are ignored. If a track fragments, we reconnect segments 

via appearance similarity and motion continuity within a 0.6-

second gap. This prevents double counting across brief 

occlusions (e.g., buses passing behind trucks). 

Edge Inference and Compression 

We export the detector to ONNX, then build an INT8 

TensorRT engine with per-tensor calibration. On NVIDIA 

Jetson Xavier/Orin, we achieve 25–30 FPS at 960×544 input. 

A CPU-only fallback uses mixed-precision quantization 

aware training (QAT) for x86 with AVX2. The tracker runs in 

parallel threads, and Kafka transports count events to a TSDB 

(e.g., 1-second aggregation). 

Pseudocode (Core Loop) 

for frame in stream: 

    dets = detector(frame)                  # 

[x,y,w,h,score,class_logits] 

    feats = appearance_encoder(frame, dets) # 128-D per det 

    tracks = tracker.update(dets, feats)    # Kalman + Hungarian 

    for t in tracks: 

        if t.crossed(line_A, dir="N->S"): 

            class_t = temporal_mode(t.class_logits_hist) 

            counts[class_t] += 1 

            log_event(t.id, class_t, ts) 

Metrics 

• Detection: mAP@0.5, AP per class. 

• Tracking: IDF1, MOTA, ID switches (IDs). 

• Counting: Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE) vs. ground 

truth; direction-wise accuracy. 

• Classification: Precision, recall, F1 per class, macro 

averages. 

• Latency: end-to-end pipeline FPS and 95th 

percentile latency. 

Data and Augmentations 

Synthetic and real segments compose training data. Synthetic 

data (CARLA) provides controlled labels; real snippets (if 

available) are used for fine-tuning. Augmentations include 

mosaic, motion blur, rain streak overlays, low-light gamma 

shifts, and specular highlight jitter. Class imbalance is 

handled by focal loss and sample reweighting (e.g., trucks 

appear less frequently than cars). 

STATISTICAL ANALYSIS 

We report precision, recall, and F1 for five vehicle classes, 

averaged across five simulated intersections under day and 
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night scenes. The table also shows absolute count MAE (per 

minute) for each class using line-crossing on the main 

inbound approach. Values reflect the best model (INT8, 

temporal ensembling, homography scale hint). 

Class Precision Recall F1 Count MAE 

(veh/min) 

Car 0.92 0.89 0.90 1.1 

Bus 0.90 0.86 0.88 0.3 

Truck 0.88 0.84 0.86 0.4 

Two-

wheeler 

0.87 0.85 0.86 0.8 

Auto-

rickshaw 

0.85 0.81 0.83 0.5 

Macro 

Avg. 

0.88 0.85 0.87 0.62 

 

Fig.3 Statistical Analysis 

Notes: (i) Night scenes reduce recall by ~0.03 on average 

without temporal ensembling; with ensembling, the recall gap 

shrinks to ~0.01. (ii) Two-wheelers and auto-rickshaws are 

more affected by occlusions and headlight glare; perspective-

aware ROIs and temporal voting narrow this gap. 

SIMULATION RESEARCH AND RESULTS 

Environment 

We build a composite simulation using CARLA (road 

geometry, vehicles, sensors) and SUMO (traffic flows and 

signal timing). Five intersection archetypes are modeled: (A) 

four-way with protected left turns; (B) T-junction with bus 

bay; (C) multi-lane roundabout; (D) pedestrian-heavy urban 

crosswalk; (E) corridor with staggered cameras. Each scene 

runs with stochastic traffic demand (Poisson arrivals), class 

priors matching typical Indian urban shares (high two-

wheeler proportion, presence of auto-rickshaws), and 

variable signal plans. We place fixed cameras at 6–9 m 

mounting heights and 20–35° tilt angles. Weather regimes 

include clear, light rain, heavy rain, and fog; lighting covers 

morning, noon, dusk, and night with headlight artifacts. 

Data generation: 

• 100,000 annotated frames at 25–30 FPS, 1080p. 

• Train/val/test split: 70/15/15 by scene and time-of-

day to avoid leakage. 

• Ground-truth counts: virtual loop sensors in 

simulation at the same line positions used by the 

algorithm. 

• Labels: bounding boxes and classes; track IDs 

derived from simulator vehicle IDs. 

Implementation Details 

• Detector: one-stage model with CSPDarknet-like 

backbone, PAN neck, decoupled detection heads. 

Input 960×544; batch size 32 during training; focal 

loss γ=2\gamma=2, label smoothing 

ϵ=0.05\epsilon=0.05. 

• Classifier refinement: attribute head (binary logits 

for bus-like length, truck-like height, two-wheeler 

aspect). The final class per detection is the argmax 

of class logits + attribute priors. 

• Tracker: Kalman with constant-velocity model; 

IoU + cosine distance 

(λcos=0.6\lambda_{cos}=0.6) for association; max 

age 30 frames; min hits 3; appearance embedding is 

a 128-D global pooled feature from a MobileNet-

like branch. 

• Counting: pair of directional lines per approach; 20-

pixel hysteresis band; duplicate suppression if a 

track re-crosses within 1.2 s in opposite direction 

(U-turn filter). 
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• Edge: TensorRT INT8; per-tensor calibration with 

2k images balanced across time-of-day; 

asynchronous pipeline for decode–infer–track; 

gRPC exporter for events. 

Ablations 

We study three design choices: 

1. Tracking vs. frame-wise counting: Without 

tracking, counts rely on non-maximum suppression 

and heuristics (center-line intersection per frame). 

This over-counts in stop-and-go traffic. Tracking 

reduces double counts and improves MAE from 3.7 

to 2.3 veh/min (−37.8%). 

2. Temporal ensembling (TE): TE over 5 frames 

improves night recall by +0.02 with negligible 

precision loss; IDF1 rises from 0.75 to 0.78 due to 

fewer class flips causing re-association issues. 

3. Homography scale hint (H): Adding H improves 

bus vs. truck separability (F1 +0.02 for both) and 

reduces auto-rickshaw misclassification by using 

size priors near the road plane. 

Quantitative Results 

On the held-out test set across all scenes and conditions: 

• Detection: mAP@0.5 = 0.81 (cars 0.86, buses 0.80, 

trucks 0.78, two-wheelers 0.79, auto-rickshaws 

0.74). 

• Tracking: IDF1 = 0.78; MOTA = 0.73; ID switches 

= 0.34 per track-minute (median). 

• Counting: overall MAE = 2.3 vehicles/minute per 

approach; MAPE = 6.5% on daytime, 8.1% at night 

with TE; direction classification accuracy = 97.2%. 

• Classification: macro precision/recall/F1 reported 

in the Statistical Analysis table; class-wise 

confusion most notable between auto-rickshaw vs. 

small cars at oblique angles, mitigated by TE + H. 

• Latency: 27.4 FPS (p95 latency 58 ms) on Jetson 

Orin NX at 960×544; 31.8 FPS on desktop RTX 

A2000 at 1280×720 FP16. 

Qualitative Observations 

• Occlusion robustness: The re-ID embeddings help 

maintain vehicle identity when a bus occludes two-

wheelers near stop bars, cutting false double counts 

notably at rush-hour platoons. 

• Night scenes: Headlight bloom generates spurious 

detections in frame-wise methods; TE + calibrated 

thresholds reduce this. 

• Rain/fog: Light rain has modest impact; heavy rain 

reduces small-object AP (two-wheelers) due to rain 

streaks and wiper occlusions. Temporal voting 

compensates partially. 

• Edge failures: Rare CPU spikes during RTSP jitter 

can momentarily stall inference; buffering and back-

pressure settings stabilize throughput without frame 

drops. 

Error Analysis 

We inspect miscounts > 4 veh/min on 20 random 1-minute 

clips: 

• 40% due to long-term occlusion behind 

buses/trucks; potential remedy: multi-camera fusion 

or overhead mounting. 

• 30% due to tight turns near the line, where 

centroids cross ambiguously; remedy: curved 

counting lines aligned with lane geometry. 

• 20% due to small-object loss (two-wheelers) at 

night; remedy: super-resolution on ROIs or class-

specific priors. 

• 10% due to re-entry when vehicles U-turn or drift 

across approaches; remedy: longer track memory 

and direction filters. 

CONCLUSION 

This work proposes a deployable, edge-aware pipeline for AI-

powered vehicle counting and classification tailored to smart-

city environments. By coupling a one-stage detector with an 

appearance-augmented tracker and perspective-aware line-

crossing, the system achieves accurate, de-duplicated counts 

and reliable class labels across varied scenes, lighting, and 

weather. Temporal ensembling and light-touch homography 

yield tangible gains at night and in occlusion-prone settings, 
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while INT8 quantization sustains real-time throughput on 

modest hardware. 

Simulation results across five intersection archetypes indicate 

strong performance: detection mAP@0.5 of 0.81, tracking 

IDF1 of 0.78, and counting MAE of 2.3 vehicles/minute—

sufficient for adaptive signal timing, demand estimation, and 

safety diagnostics. Error analysis highlights residual 

challenges: persistent occlusions behind large vehicles, 

ambiguous centroid crossings at tight turns, and small-object 

degradation in heavy rain or low light. These point to next 

steps: (i) multi-camera association to bridge occlusions and 

avoid double counts across views; (ii) dynamic, lane-aligned 

counting curves derived from lane-detection networks; (iii) 

class-specific enhancement (e.g., super-resolution or small-

object expert heads) for two-wheelers and auto-rickshaws; 

(iv) semi-supervised domain adaptation to continuously 

refine models using confident pseudo-labels; and (v) privacy-

preserving analytics with on-prem retention and event-only 

export. 

Overall, the proposed approach balances accuracy, 

interpretability, and operational practicality. It leverages 

existing CCTV assets, requires minimal calibration, and fits 

within the compute envelope of affordable edge devices. As 

cities push toward responsive traffic management and Vision 

Zero initiatives, such AI-powered counting and classification 

systems can provide the granular, timely data needed to 

manage congestion, prioritize transit, and improve road safety 

without costly new infrastructure. 
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